Determination of thermophysical properties and boundary conditions of direct chill-cast aluminum alloys using inverse methods View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-06

AUTHORS

J. -M. Drezet, M. Rappaz, G. -U. Grün, M. Gremaud

ABSTRACT

In order to quantify the cooling conditions undergone by an ingot during direct-chill (DC) casting, thermocouples were immersed in the liquid pool and consequently entrapped in the solid, thus monitoring the temperature of the metal during its descent. Assuming steady-state thermal conditions, the time-dependent temperatures measured by these thermocouples were then converted into spacedependent temperature profiles. These values were the input of a Maximum A Posteriori (MAP) inverse method described by Rappaz et al.,[1] which has been adapted in this case to steady-state thermal conditions. This MAP method permits the deduction of the temperature-dependent thermal conductivity of the alloy, initially, and then of the highly nonuniform heat-flux distribution along the ingot rolling faces, in a second step. The obtained values are in good agreement with literature and clearly reflect the widely different boundary conditions associated with primary cooling (contact with the mold) and secondary cooling (water jet). More... »

PAGES

1627-1634

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11661-000-0172-5

DOI

http://dx.doi.org/10.1007/s11661-000-0172-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032924814


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "the Laboratorie de M\u00e9tallurgie Physique, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "the Laboratorie de M\u00e9tallurgie Physique, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drezet", 
        "givenName": "J. -M.", 
        "id": "sg:person.01212610757.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212610757.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Laboratorie de M\u00e9tallurgie Physique, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "the Laboratorie de M\u00e9tallurgie Physique, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaz", 
        "givenName": "M.", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "the Research and Development Centre, VAW Aluminum AG, D-53014, Bonn, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "the Research and Development Centre, VAW Aluminum AG, D-53014, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gr\u00fcn", 
        "givenName": "G. -U.", 
        "id": "sg:person.010604440201.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010604440201.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Calcom SA, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.433079.a", 
          "name": [
            "Calcom SA, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gremaud", 
        "givenName": "M.", 
        "id": "sg:person.015634370015.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634370015.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02654013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035858322", 
          "https://doi.org/10.1007/bf02654013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02651729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014646416", 
          "https://doi.org/10.1007/bf02651729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-999-0025-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048367487", 
          "https://doi.org/10.1007/s11661-999-0025-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02663872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016278964", 
          "https://doi.org/10.1007/bf02663872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02650017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003457598", 
          "https://doi.org/10.1007/bf02650017"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-06", 
    "datePublishedReg": "2000-06-01", 
    "description": "In order to quantify the cooling conditions undergone by an ingot during direct-chill (DC) casting, thermocouples were immersed in the liquid pool and consequently entrapped in the solid, thus monitoring the temperature of the metal during its descent. Assuming steady-state thermal conditions, the time-dependent temperatures measured by these thermocouples were then converted into spacedependent temperature profiles. These values were the input of a Maximum A Posteriori (MAP) inverse method described by Rappaz et al.,[1] which has been adapted in this case to steady-state thermal conditions. This MAP method permits the deduction of the temperature-dependent thermal conductivity of the alloy, initially, and then of the highly nonuniform heat-flux distribution along the ingot rolling faces, in a second step. The obtained values are in good agreement with literature and clearly reflect the widely different boundary conditions associated with primary cooling (contact with the mold) and secondary cooling (water jet).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11661-000-0172-5", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136292", 
        "issn": [
          "1073-5623", 
          "1543-1940"
        ], 
        "name": "Metallurgical and Materials Transactions A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "steady-state thermal conditions", 
      "nonuniform heat flux distribution", 
      "temperature-dependent thermal conductivity", 
      "direct-chill casting", 
      "heat flux distribution", 
      "inverse method", 
      "boundary conditions", 
      "different boundary conditions", 
      "thermal conditions", 
      "time-dependent temperature", 
      "secondary cooling", 
      "aluminum alloy", 
      "liquid pool", 
      "thermal conductivity", 
      "primary cooling", 
      "thermophysical properties", 
      "temperature profiles", 
      "thermocouples", 
      "alloy", 
      "ingots", 
      "good agreement", 
      "cooling", 
      "temperature", 
      "casting", 
      "second step", 
      "conductivity", 
      "conditions", 
      "map method", 
      "method", 
      "metals", 
      "properties", 
      "values", 
      "agreement", 
      "input", 
      "al", 
      "order", 
      "distribution", 
      "et al", 
      "step", 
      "profile", 
      "determination", 
      "deduction", 
      "cases", 
      "face", 
      "descent", 
      "literature", 
      "pool"
    ], 
    "name": "Determination of thermophysical properties and boundary conditions of direct chill-cast aluminum alloys using inverse methods", 
    "pagination": "1627-1634", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032924814"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11661-000-0172-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11661-000-0172-5", 
      "https://app.dimensions.ai/details/publication/pub.1032924814"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_304.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11661-000-0172-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11661-000-0172-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11661-000-0172-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11661-000-0172-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11661-000-0172-5'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      21 PREDICATES      78 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11661-000-0172-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 anzsrc-for:0915
4 schema:author N52330dada2dc4c62a75e34573680375f
5 schema:citation sg:pub.10.1007/bf02650017
6 sg:pub.10.1007/bf02651729
7 sg:pub.10.1007/bf02654013
8 sg:pub.10.1007/bf02663872
9 sg:pub.10.1007/s11661-999-0025-9
10 schema:datePublished 2000-06
11 schema:datePublishedReg 2000-06-01
12 schema:description In order to quantify the cooling conditions undergone by an ingot during direct-chill (DC) casting, thermocouples were immersed in the liquid pool and consequently entrapped in the solid, thus monitoring the temperature of the metal during its descent. Assuming steady-state thermal conditions, the time-dependent temperatures measured by these thermocouples were then converted into spacedependent temperature profiles. These values were the input of a Maximum A Posteriori (MAP) inverse method described by Rappaz et al.,[1] which has been adapted in this case to steady-state thermal conditions. This MAP method permits the deduction of the temperature-dependent thermal conductivity of the alloy, initially, and then of the highly nonuniform heat-flux distribution along the ingot rolling faces, in a second step. The obtained values are in good agreement with literature and clearly reflect the widely different boundary conditions associated with primary cooling (contact with the mold) and secondary cooling (water jet).
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf N2b569dce85704a909a73e8f02912f949
16 Na78f64cd0cd546c9b86385edbfdfec74
17 sg:journal.1136292
18 schema:keywords agreement
19 al
20 alloy
21 aluminum alloy
22 boundary conditions
23 cases
24 casting
25 conditions
26 conductivity
27 cooling
28 deduction
29 descent
30 determination
31 different boundary conditions
32 direct-chill casting
33 distribution
34 et al
35 face
36 good agreement
37 heat flux distribution
38 ingots
39 input
40 inverse method
41 liquid pool
42 literature
43 map method
44 metals
45 method
46 nonuniform heat flux distribution
47 order
48 pool
49 primary cooling
50 profile
51 properties
52 second step
53 secondary cooling
54 steady-state thermal conditions
55 step
56 temperature
57 temperature profiles
58 temperature-dependent thermal conductivity
59 thermal conditions
60 thermal conductivity
61 thermocouples
62 thermophysical properties
63 time-dependent temperature
64 values
65 schema:name Determination of thermophysical properties and boundary conditions of direct chill-cast aluminum alloys using inverse methods
66 schema:pagination 1627-1634
67 schema:productId N9c331e6c9e95423f97b35bb8deb65384
68 Na9624761bf4a41ae9de16c34a10d3d65
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032924814
70 https://doi.org/10.1007/s11661-000-0172-5
71 schema:sdDatePublished 2022-11-24T20:49
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N17995d7266d745f4bfdba605f38b57d0
74 schema:url https://doi.org/10.1007/s11661-000-0172-5
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N17995d7266d745f4bfdba605f38b57d0 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N182148b0887b4b9b950c56039d100e42 rdf:first sg:person.010604440201.42
81 rdf:rest N7487c42ed9cc4ad29c94c96e3ba08f12
82 N2b569dce85704a909a73e8f02912f949 schema:issueNumber 6
83 rdf:type schema:PublicationIssue
84 N52330dada2dc4c62a75e34573680375f rdf:first sg:person.01212610757.30
85 rdf:rest N67a8f41adb8a4e19821e6026f012dc4e
86 N67a8f41adb8a4e19821e6026f012dc4e rdf:first sg:person.013657516157.10
87 rdf:rest N182148b0887b4b9b950c56039d100e42
88 N7487c42ed9cc4ad29c94c96e3ba08f12 rdf:first sg:person.015634370015.93
89 rdf:rest rdf:nil
90 N9c331e6c9e95423f97b35bb8deb65384 schema:name dimensions_id
91 schema:value pub.1032924814
92 rdf:type schema:PropertyValue
93 Na78f64cd0cd546c9b86385edbfdfec74 schema:volumeNumber 31
94 rdf:type schema:PublicationVolume
95 Na9624761bf4a41ae9de16c34a10d3d65 schema:name doi
96 schema:value 10.1007/s11661-000-0172-5
97 rdf:type schema:PropertyValue
98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
99 schema:name Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
102 schema:name Materials Engineering
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
105 schema:name Interdisciplinary Engineering
106 rdf:type schema:DefinedTerm
107 sg:journal.1136292 schema:issn 1073-5623
108 1543-1940
109 schema:name Metallurgical and Materials Transactions A
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.010604440201.42 schema:affiliation grid-institutes:None
113 schema:familyName Grün
114 schema:givenName G. -U.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010604440201.42
116 rdf:type schema:Person
117 sg:person.01212610757.30 schema:affiliation grid-institutes:grid.5333.6
118 schema:familyName Drezet
119 schema:givenName J. -M.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212610757.30
121 rdf:type schema:Person
122 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
123 schema:familyName Rappaz
124 schema:givenName M.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
126 rdf:type schema:Person
127 sg:person.015634370015.93 schema:affiliation grid-institutes:grid.433079.a
128 schema:familyName Gremaud
129 schema:givenName M.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634370015.93
131 rdf:type schema:Person
132 sg:pub.10.1007/bf02650017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003457598
133 https://doi.org/10.1007/bf02650017
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf02651729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014646416
136 https://doi.org/10.1007/bf02651729
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bf02654013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035858322
139 https://doi.org/10.1007/bf02654013
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/bf02663872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016278964
142 https://doi.org/10.1007/bf02663872
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s11661-999-0025-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048367487
145 https://doi.org/10.1007/s11661-999-0025-9
146 rdf:type schema:CreativeWork
147 grid-institutes:None schema:alternateName the Research and Development Centre, VAW Aluminum AG, D-53014, Bonn, Germany
148 schema:name the Research and Development Centre, VAW Aluminum AG, D-53014, Bonn, Germany
149 rdf:type schema:Organization
150 grid-institutes:grid.433079.a schema:alternateName Calcom SA, CH-1015, Lausanne, Switzerland
151 schema:name Calcom SA, CH-1015, Lausanne, Switzerland
152 rdf:type schema:Organization
153 grid-institutes:grid.5333.6 schema:alternateName the Laboratorie de Métallurgie Physique, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
154 schema:name the Laboratorie de Métallurgie Physique, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...