Variable selection in model-based clustering and discriminant analysis with a regularization approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Gilles Celeux, Cathy Maugis-Rabusseau, Mohammed Sedki

ABSTRACT

Several methods for variable selection have been proposed in model-based clustering and classification. These make use of backward or forward procedures to define the roles of the variables. Unfortunately, such stepwise procedures are slow and the resulting algorithms inefficient when analyzing large data sets with many variables. In this paper, we propose an alternative regularization approach for variable selection in model-based clustering and classification. In our approach the variables are first ranked using a lasso-like procedure in order to avoid slow stepwise algorithms. Thus, the variable selection methodology of Maugis et al. (Comput Stat Data Anal 53:3872–3882, 2000b) can be efficiently applied to high-dimensional data sets. More... »

PAGES

1-20

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11634-018-0322-5

DOI

http://dx.doi.org/10.1007/s11634-018-0322-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103219445


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "Dept. de math\u00e9matiques, Inria and Universit\u00e9 Paris-Sud, Btiment 425, 91405, Orsay Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Celeux", 
        "givenName": "Gilles", 
        "id": "sg:person.01143267124.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143267124.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toulouse Mathematics Institute", 
          "id": "https://www.grid.ac/institutes/grid.462146.3", 
          "name": [
            "Institut de Math\u00e9matiques de Toulouse, UMR 5219, Universit\u00e9 de Toulouse, INSA de Toulouse, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maugis-Rabusseau", 
        "givenName": "Cathy", 
        "id": "sg:person.0751661305.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751661305.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital Paul Brousse", 
          "id": "https://www.grid.ac/institutes/grid.413133.7", 
          "name": [
            "Paris-Sud University and INSERM U1181, B\u00e2timent. 15/16, H\u00f4pital Paul Brousse, 16 avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedki", 
        "givenName": "Mohammed", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2007.00922.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005368236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxm045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005517859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053606000000281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017239463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(94)00125-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018833578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-aoas279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020045597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022446268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-013-0433-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027219884", 
          "https://doi.org/10.1007/s00180-013-0433-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2009.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031364470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1509/jmr.10.0395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031400100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1509/jmr.10.0395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031400100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2009.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038936898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2011.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041570818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2008.01160.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042489093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/08-ejs194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043550091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044872629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10618600.2012.679226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058368786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.865189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2004.71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214504000001565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000000113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214508000000544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-ejs487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/12-ejs668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064393331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v047.i05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v067.i06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068673013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2532201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078982538", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079351592", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.32614/rj-2016-021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079351592"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Several methods for variable selection have been proposed in model-based clustering and classification. These make use of backward or forward procedures to define the roles of the variables. Unfortunately, such stepwise procedures are slow and the resulting algorithms inefficient when analyzing large data sets with many variables. In this paper, we propose an alternative regularization approach for variable selection in model-based clustering and classification. In our approach the variables are first ranked using a lasso-like procedure in order to avoid slow stepwise algorithms. Thus, the variable selection methodology of Maugis et al. (Comput Stat Data Anal 53:3872\u20133882, 2000b) can be efficiently applied to high-dimensional data sets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11634-018-0322-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045303", 
        "issn": [
          "1862-5347", 
          "1862-5355"
        ], 
        "name": "Advances in Data Analysis and Classification", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Variable selection in model-based clustering and discriminant analysis with a regularization approach", 
    "pagination": "1-20", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11634-018-0322-5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e5defc6797b8e2574a4d9ff459857f9390b156f239d41be00b2a3771ac424db"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103219445"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11634-018-0322-5", 
      "https://app.dimensions.ai/details/publication/pub.1103219445"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56176_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11634-018-0322-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11634-018-0322-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11634-018-0322-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11634-018-0322-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11634-018-0322-5'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11634-018-0322-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ncb8e118b782f4d72916283e2b3cea57f
4 schema:citation sg:pub.10.1007/s00180-013-0433-6
5 https://app.dimensions.ai/details/publication/pub.1078982538
6 https://app.dimensions.ai/details/publication/pub.1079351592
7 https://doi.org/10.1016/0031-3203(94)00125-6
8 https://doi.org/10.1016/j.csda.2009.04.013
9 https://doi.org/10.1016/j.csda.2009.05.025
10 https://doi.org/10.1016/j.jmva.2011.05.004
11 https://doi.org/10.1080/10618600.2012.679226
12 https://doi.org/10.1093/biostatistics/kxm045
13 https://doi.org/10.1093/nar/gkm757
14 https://doi.org/10.1109/34.865189
15 https://doi.org/10.1109/tpami.2004.71
16 https://doi.org/10.1111/j.1541-0420.2007.00922.x
17 https://doi.org/10.1111/j.1541-0420.2008.01160.x
18 https://doi.org/10.1198/016214504000001565
19 https://doi.org/10.1198/016214506000000113
20 https://doi.org/10.1198/016214508000000544
21 https://doi.org/10.1214/009053606000000281
22 https://doi.org/10.1214/08-ejs194
23 https://doi.org/10.1214/09-aoas279
24 https://doi.org/10.1214/09-ejs487
25 https://doi.org/10.1214/12-ejs668
26 https://doi.org/10.1214/aos/1176344136
27 https://doi.org/10.1509/jmr.10.0395
28 https://doi.org/10.18637/jss.v047.i05
29 https://doi.org/10.18637/jss.v067.i06
30 https://doi.org/10.2307/2532201
31 https://doi.org/10.32614/rj-2016-021
32 schema:datePublished 2019-03
33 schema:datePublishedReg 2019-03-01
34 schema:description Several methods for variable selection have been proposed in model-based clustering and classification. These make use of backward or forward procedures to define the roles of the variables. Unfortunately, such stepwise procedures are slow and the resulting algorithms inefficient when analyzing large data sets with many variables. In this paper, we propose an alternative regularization approach for variable selection in model-based clustering and classification. In our approach the variables are first ranked using a lasso-like procedure in order to avoid slow stepwise algorithms. Thus, the variable selection methodology of Maugis et al. (Comput Stat Data Anal 53:3872–3882, 2000b) can be efficiently applied to high-dimensional data sets.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N8b90b64041a94217990475d98c5cd23d
39 Na8c83107cbeb4c0991edf9f13b97779d
40 sg:journal.1045303
41 schema:name Variable selection in model-based clustering and discriminant analysis with a regularization approach
42 schema:pagination 1-20
43 schema:productId N0b5f6867ed7945c8ac47eb7058999b8b
44 N69897279915449dc92323ff5dbbd5842
45 N6b1480210d334b13a4d1b738a098506e
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103219445
47 https://doi.org/10.1007/s11634-018-0322-5
48 schema:sdDatePublished 2019-04-15T09:19
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nd27123e8b5b1487ca853c06b2ca6cd47
51 schema:url https://link.springer.com/10.1007%2Fs11634-018-0322-5
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0b5f6867ed7945c8ac47eb7058999b8b schema:name readcube_id
56 schema:value 7e5defc6797b8e2574a4d9ff459857f9390b156f239d41be00b2a3771ac424db
57 rdf:type schema:PropertyValue
58 N2eec478f10374520a99efecf4a619a08 schema:affiliation https://www.grid.ac/institutes/grid.413133.7
59 schema:familyName Sedki
60 schema:givenName Mohammed
61 rdf:type schema:Person
62 N5e6c46326088415fa3fa2396f3317c1c rdf:first N2eec478f10374520a99efecf4a619a08
63 rdf:rest rdf:nil
64 N69897279915449dc92323ff5dbbd5842 schema:name doi
65 schema:value 10.1007/s11634-018-0322-5
66 rdf:type schema:PropertyValue
67 N6b1480210d334b13a4d1b738a098506e schema:name dimensions_id
68 schema:value pub.1103219445
69 rdf:type schema:PropertyValue
70 N8b90b64041a94217990475d98c5cd23d schema:volumeNumber 13
71 rdf:type schema:PublicationVolume
72 N9dde06fad62a434d95568630d65f209f rdf:first sg:person.0751661305.56
73 rdf:rest N5e6c46326088415fa3fa2396f3317c1c
74 Na8c83107cbeb4c0991edf9f13b97779d schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 Ncb8e118b782f4d72916283e2b3cea57f rdf:first sg:person.01143267124.37
77 rdf:rest N9dde06fad62a434d95568630d65f209f
78 Nd27123e8b5b1487ca853c06b2ca6cd47 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:journal.1045303 schema:issn 1862-5347
87 1862-5355
88 schema:name Advances in Data Analysis and Classification
89 rdf:type schema:Periodical
90 sg:person.01143267124.37 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
91 schema:familyName Celeux
92 schema:givenName Gilles
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143267124.37
94 rdf:type schema:Person
95 sg:person.0751661305.56 schema:affiliation https://www.grid.ac/institutes/grid.462146.3
96 schema:familyName Maugis-Rabusseau
97 schema:givenName Cathy
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751661305.56
99 rdf:type schema:Person
100 sg:pub.10.1007/s00180-013-0433-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027219884
101 https://doi.org/10.1007/s00180-013-0433-6
102 rdf:type schema:CreativeWork
103 https://app.dimensions.ai/details/publication/pub.1078982538 schema:CreativeWork
104 https://app.dimensions.ai/details/publication/pub.1079351592 schema:CreativeWork
105 https://doi.org/10.1016/0031-3203(94)00125-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018833578
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.csda.2009.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038936898
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.csda.2009.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031364470
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jmva.2011.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041570818
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1080/10618600.2012.679226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058368786
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1093/biostatistics/kxm045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005517859
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1093/nar/gkm757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022446268
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/34.865189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157115
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tpami.2004.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742749
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1111/j.1541-0420.2007.00922.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005368236
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1541-0420.2008.01160.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042489093
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1198/016214504000001565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198284
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1198/016214506000000113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198483
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1198/016214508000000544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198814
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1214/009053606000000281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017239463
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1214/08-ejs194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043550091
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1214/09-aoas279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020045597
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1214/09-ejs487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391056
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1214/12-ejs668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393331
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1509/jmr.10.0395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031400100
146 rdf:type schema:CreativeWork
147 https://doi.org/10.18637/jss.v047.i05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672705
148 rdf:type schema:CreativeWork
149 https://doi.org/10.18637/jss.v067.i06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068673013
150 rdf:type schema:CreativeWork
151 https://doi.org/10.2307/2532201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977629
152 rdf:type schema:CreativeWork
153 https://doi.org/10.32614/rj-2016-021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079351592
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.413133.7 schema:alternateName Hospital Paul Brousse
156 schema:name Paris-Sud University and INSERM U1181, Bâtiment. 15/16, Hôpital Paul Brousse, 16 avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.462146.3 schema:alternateName Toulouse Mathematics Institute
159 schema:name Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, INSA de Toulouse, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.5842.b schema:alternateName University of Paris-Sud
162 schema:name Dept. de mathématiques, Inria and Université Paris-Sud, Btiment 425, 91405, Orsay Cedex, France
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...