Discovering patterns in time-varying graphs: a triclustering approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09

AUTHORS

Romain Guigourès, Marc Boullé, Fabrice Rossi

ABSTRACT

This paper introduces a novel technique to track structures in time varying graphs. The method uses a maximum a posteriori approach for adjusting a three-dimensional co-clustering of the source vertices, the destination vertices and the time, to the data under study, in a way that does not require any hyper-parameter tuning. The three dimensions are simultaneously segmented in order to build clusters of source vertices, destination vertices and time segments where the edge distributions across clusters of vertices follow the same evolution over the time segments. The main novelty of this approach lies in that the time segments are directly inferred from the evolution of the edge distribution between the vertices, thus not requiring the user to make any a priori quantization. Experiments conducted on artificial data illustrate the good behavior of the technique, and a study of a real-life data set shows the potential of the proposed approach for exploratory data analysis. More... »

PAGES

509-536

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11634-015-0218-6

DOI

http://dx.doi.org/10.1007/s11634-015-0218-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045602757


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Orange (France)", 
          "id": "https://www.grid.ac/institutes/grid.89485.38", 
          "name": [
            "Orange Labs, 2 avenue Pierre Marzin, 22300, Lannion, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guigour\u00e8s", 
        "givenName": "Romain", 
        "id": "sg:person.015633146441.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633146441.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Orange (France)", 
          "id": "https://www.grid.ac/institutes/grid.89485.38", 
          "name": [
            "Orange Labs, 2 avenue Pierre Marzin, 22300, Lannion, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boull\u00e9", 
        "givenName": "Marc", 
        "id": "sg:person.012201063231.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201063231.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pantheon-Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.10988.38", 
          "name": [
            "SAMM EA 45 43, Universit\u00e9 Paris 1, 90 rue Tolbiac, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rossi", 
        "givenName": "Fabrice", 
        "id": "sg:person.0630435162.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630435162.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/956750.956764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002795037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-8733(83)90025-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002805517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-8733(83)90025-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002805517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17445760.2012.668546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005693413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010025359", 
          "https://doi.org/10.1038/nature05670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010025359", 
          "https://doi.org/10.1038/nature05670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2006.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010342043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1281192.1281266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018036487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020482279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-95995-3_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025977907", 
          "https://doi.org/10.1007/978-3-540-95995-3_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-95995-3_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025977907", 
          "https://doi.org/10.1007/978-3-540-95995-3_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cosrev.2007.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033485072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-aoas311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034770145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(00)00100-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035285168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1066157.1066236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039688059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1102351.1102357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040023513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-8733(88)90016-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051568252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052867467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0307750100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053644864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00031305.1998.10480559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058259925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1972.10481214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/226141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058545639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/41.8.537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059479197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.61115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0962280204sm373ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0962280204sm373ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214501753208735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1561/2200000005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068001400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmla.2010.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093177339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdmw.2012.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095236342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdmw.2012.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095236342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2006.36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095321211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2006.36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095321211"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "This paper introduces a novel technique to track structures in time varying graphs. The method uses a maximum a posteriori approach for adjusting a three-dimensional co-clustering of the source vertices, the destination vertices and the time, to the data under study, in a way that does not require any hyper-parameter tuning. The three dimensions are simultaneously segmented in order to build clusters of source vertices, destination vertices and time segments where the edge distributions across clusters of vertices follow the same evolution over the time segments. The main novelty of this approach lies in that the time segments are directly inferred from the evolution of the edge distribution between the vertices, thus not requiring the user to make any a priori quantization. Experiments conducted on artificial data illustrate the good behavior of the technique, and a study of a real-life data set shows the potential of the proposed approach for exploratory data analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11634-015-0218-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045303", 
        "issn": [
          "1862-5347", 
          "1862-5355"
        ], 
        "name": "Advances in Data Analysis and Classification", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Discovering patterns in time-varying graphs: a triclustering approach", 
    "pagination": "509-536", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d939df72a10c19dd8eb41a25e11bdca8b802fe53b9cdaa90a2b294601f447b1c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11634-015-0218-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045602757"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11634-015-0218-6", 
      "https://app.dimensions.ai/details/publication/pub.1045602757"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000593.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11634-015-0218-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11634-015-0218-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11634-015-0218-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11634-015-0218-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11634-015-0218-6'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11634-015-0218-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne5841baf5c66480f83b2ad3dc17ac152
4 schema:citation sg:pub.10.1007/978-3-540-95995-3_1
5 sg:pub.10.1038/nature03607
6 sg:pub.10.1038/nature05670
7 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
8 https://doi.org/10.1016/0378-8733(83)90025-4
9 https://doi.org/10.1016/0378-8733(88)90016-0
10 https://doi.org/10.1016/j.cosrev.2007.05.001
11 https://doi.org/10.1016/j.csda.2006.06.002
12 https://doi.org/10.1016/j.physrep.2009.11.002
13 https://doi.org/10.1016/s0377-2217(00)00100-4
14 https://doi.org/10.1073/pnas.0307750100
15 https://doi.org/10.1080/00031305.1998.10480559
16 https://doi.org/10.1080/01621459.1972.10481214
17 https://doi.org/10.1080/17445760.2012.668546
18 https://doi.org/10.1086/226141
19 https://doi.org/10.1093/comjnl/41.8.537
20 https://doi.org/10.1109/18.61115
21 https://doi.org/10.1109/icdm.2006.36
22 https://doi.org/10.1109/icdmw.2012.61
23 https://doi.org/10.1109/icmla.2010.33
24 https://doi.org/10.1145/1066157.1066236
25 https://doi.org/10.1145/1102351.1102357
26 https://doi.org/10.1145/1281192.1281266
27 https://doi.org/10.1145/956750.956764
28 https://doi.org/10.1191/0962280204sm373ra
29 https://doi.org/10.1198/016214501753208735
30 https://doi.org/10.1214/09-aoas311
31 https://doi.org/10.1561/2200000005
32 schema:datePublished 2018-09
33 schema:datePublishedReg 2018-09-01
34 schema:description This paper introduces a novel technique to track structures in time varying graphs. The method uses a maximum a posteriori approach for adjusting a three-dimensional co-clustering of the source vertices, the destination vertices and the time, to the data under study, in a way that does not require any hyper-parameter tuning. The three dimensions are simultaneously segmented in order to build clusters of source vertices, destination vertices and time segments where the edge distributions across clusters of vertices follow the same evolution over the time segments. The main novelty of this approach lies in that the time segments are directly inferred from the evolution of the edge distribution between the vertices, thus not requiring the user to make any a priori quantization. Experiments conducted on artificial data illustrate the good behavior of the technique, and a study of a real-life data set shows the potential of the proposed approach for exploratory data analysis.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N52bfa49fc5654412bc052389c83714e8
39 Nee81ae6157614a36bb49a9d9dab3b270
40 sg:journal.1045303
41 schema:name Discovering patterns in time-varying graphs: a triclustering approach
42 schema:pagination 509-536
43 schema:productId N360f49104e524864b21befe804414594
44 N7d333702bcc64dadbcc6ce184086a201
45 N842f3f1dd5064a3f898f3f2d21b8799e
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045602757
47 https://doi.org/10.1007/s11634-015-0218-6
48 schema:sdDatePublished 2019-04-10T19:20
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N079f710e6e0f40678387824f21a2b283
51 schema:url http://link.springer.com/10.1007%2Fs11634-015-0218-6
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N079f710e6e0f40678387824f21a2b283 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N0dc8d6429f1d439c892ca5969d9aba32 rdf:first sg:person.012201063231.13
58 rdf:rest N5afc5ca15af24409a51a1400395fa995
59 N360f49104e524864b21befe804414594 schema:name doi
60 schema:value 10.1007/s11634-015-0218-6
61 rdf:type schema:PropertyValue
62 N52bfa49fc5654412bc052389c83714e8 schema:issueNumber 3
63 rdf:type schema:PublicationIssue
64 N5afc5ca15af24409a51a1400395fa995 rdf:first sg:person.0630435162.11
65 rdf:rest rdf:nil
66 N7d333702bcc64dadbcc6ce184086a201 schema:name readcube_id
67 schema:value d939df72a10c19dd8eb41a25e11bdca8b802fe53b9cdaa90a2b294601f447b1c
68 rdf:type schema:PropertyValue
69 N842f3f1dd5064a3f898f3f2d21b8799e schema:name dimensions_id
70 schema:value pub.1045602757
71 rdf:type schema:PropertyValue
72 Ne5841baf5c66480f83b2ad3dc17ac152 rdf:first sg:person.015633146441.37
73 rdf:rest N0dc8d6429f1d439c892ca5969d9aba32
74 Nee81ae6157614a36bb49a9d9dab3b270 schema:volumeNumber 12
75 rdf:type schema:PublicationVolume
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
80 schema:name Artificial Intelligence and Image Processing
81 rdf:type schema:DefinedTerm
82 sg:journal.1045303 schema:issn 1862-5347
83 1862-5355
84 schema:name Advances in Data Analysis and Classification
85 rdf:type schema:Periodical
86 sg:person.012201063231.13 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
87 schema:familyName Boullé
88 schema:givenName Marc
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201063231.13
90 rdf:type schema:Person
91 sg:person.015633146441.37 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
92 schema:familyName Guigourès
93 schema:givenName Romain
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633146441.37
95 rdf:type schema:Person
96 sg:person.0630435162.11 schema:affiliation https://www.grid.ac/institutes/grid.10988.38
97 schema:familyName Rossi
98 schema:givenName Fabrice
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630435162.11
100 rdf:type schema:Person
101 sg:pub.10.1007/978-3-540-95995-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025977907
102 https://doi.org/10.1007/978-3-540-95995-3_1
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/nature03607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155732
105 https://doi.org/10.1038/nature03607
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/nature05670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010025359
108 https://doi.org/10.1038/nature05670
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0378-8733(83)90025-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002805517
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0378-8733(88)90016-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051568252
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.cosrev.2007.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033485072
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.csda.2006.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010342043
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.physrep.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020482279
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0377-2217(00)00100-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035285168
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1073/pnas.0307750100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053644864
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/00031305.1998.10480559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058259925
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1080/01621459.1972.10481214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300862
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/17445760.2012.668546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005693413
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1086/226141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058545639
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1093/comjnl/41.8.537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059479197
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/18.61115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100441
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/icdm.2006.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095321211
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/icdmw.2012.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095236342
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/icmla.2010.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093177339
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/1066157.1066236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039688059
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/1102351.1102357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040023513
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/1281192.1281266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018036487
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/956750.956764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002795037
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1191/0962280204sm373ra schema:sameAs https://app.dimensions.ai/details/publication/pub.1064155220
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1198/016214501753208735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197877
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1214/09-aoas311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034770145
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1561/2200000005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068001400
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.10988.38 schema:alternateName Pantheon-Sorbonne University
161 schema:name SAMM EA 45 43, Université Paris 1, 90 rue Tolbiac, 75013, Paris, France
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.89485.38 schema:alternateName Orange (France)
164 schema:name Orange Labs, 2 avenue Pierre Marzin, 22300, Lannion, France
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...