Ontology type: schema:ScholarlyArticle
2013-12-22
AUTHORSFabrizio Durante, Roberta Pappadà, Nicola Torelli
ABSTRACTA methodology is presented for clustering financial time series according to the association in the tail of their distribution. The procedure is based on the calculation of suitable pairwise conditional Spearman’s correlation coefficients extracted from the series. The performance of the method has been tested via a simulation study. As an illustration, an analysis of the components of the Italian FTSE–MIB is presented. The results could be applied to construct financial portfolios that can manage to reduce the risk in case of simultaneous large losses in several markets. More... »
PAGES359-376
http://scigraph.springernature.com/pub.10.1007/s11634-013-0160-4
DOIhttp://dx.doi.org/10.1007/s11634-013-0160-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1040088698
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Economics and Management, Free University of Bozen-Bolzano, Piazza Universit\u00e0 1, 39100, Bolzano, Italy",
"id": "http://www.grid.ac/institutes/grid.34988.3e",
"name": [
"School of Economics and Management, Free University of Bozen-Bolzano, Piazza Universit\u00e0 1, 39100, Bolzano, Italy"
],
"type": "Organization"
},
"familyName": "Durante",
"givenName": "Fabrizio",
"id": "sg:person.013475607471.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013475607471.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Statistical Sciences, University of Padua, Via Cesare Battisti 241, 35121, Padova, Italy",
"id": "http://www.grid.ac/institutes/grid.5608.b",
"name": [
"Department of Statistical Sciences, University of Padua, Via Cesare Battisti 241, 35121, Padova, Italy"
],
"type": "Organization"
},
"familyName": "Pappad\u00e0",
"givenName": "Roberta",
"id": "sg:person.013744432541.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013744432541.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Economics, Business, Mathematics and Statistics \u201cBruno De Finetti\u201d, University of Trieste, Via Valerio 4/1, 34127, Trieste, Italy",
"id": "http://www.grid.ac/institutes/grid.5133.4",
"name": [
"Department of Economics, Business, Mathematics and Statistics \u201cBruno De Finetti\u201d, University of Trieste, Via Valerio 4/1, 34127, Trieste, Italy"
],
"type": "Organization"
},
"familyName": "Torelli",
"givenName": "Nicola",
"id": "sg:person.016451556573.75",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016451556573.75"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10260-010-0142-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025184581",
"https://doi.org/10.1007/s10260-010-0142-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s100510050929",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045803407",
"https://doi.org/10.1007/s100510050929"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-35407-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016686594",
"https://doi.org/10.1007/978-3-642-35407-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11634-011-0098-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014781474",
"https://doi.org/10.1007/s11634-011-0098-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-12465-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005643223",
"https://doi.org/10.1007/978-3-642-12465-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-33042-1_34",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019847062",
"https://doi.org/10.1007/978-3-642-33042-1_34"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-12465-5_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052382857",
"https://doi.org/10.1007/978-3-642-12465-5_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01908075",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022323983",
"https://doi.org/10.1007/bf01908075"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjb/e2004-00129-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036748423",
"https://doi.org/10.1140/epjb/e2004-00129-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-12465-5_10",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049385313",
"https://doi.org/10.1007/978-3-642-12465-5_10"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11634-011-0099-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028807033",
"https://doi.org/10.1007/s11634-011-0099-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-17229-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013039038",
"https://doi.org/10.1007/978-3-642-17229-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02294245",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012945757",
"https://doi.org/10.1007/bf02294245"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-12465-5_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031567327",
"https://doi.org/10.1007/978-3-642-12465-5_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10260-012-0214-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035980115",
"https://doi.org/10.1007/s10260-012-0214-3"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-12-22",
"datePublishedReg": "2013-12-22",
"description": "A methodology is presented for clustering financial time series according to the association in the tail of their distribution. The procedure is based on the calculation of suitable pairwise conditional Spearman\u2019s correlation coefficients extracted from the series. The performance of the method has been tested via a simulation study. As an illustration, an analysis of the components of the Italian FTSE\u2013MIB is presented. The results could be applied to construct financial portfolios that can manage to reduce the risk in case of simultaneous large losses in several markets.",
"genre": "article",
"id": "sg:pub.10.1007/s11634-013-0160-4",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1045303",
"issn": [
"1862-5347",
"1862-5355"
],
"name": "Advances in Data Analysis and Classification",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "8"
}
],
"keywords": [
"financial time series",
"time series",
"financial portfolios",
"FTSE MIB",
"risky scenarios",
"large losses",
"portfolio",
"market",
"simulation study",
"illustration",
"methodology",
"series",
"scenarios",
"risk",
"analysis",
"tail",
"performance",
"distribution",
"results",
"cases",
"correlation coefficient",
"loss",
"study",
"coefficient",
"procedure",
"components",
"method",
"association",
"Spearman correlation coefficient",
"calculations"
],
"name": "Clustering of financial time series in risky scenarios",
"pagination": "359-376",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1040088698"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11634-013-0160-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11634-013-0160-4",
"https://app.dimensions.ai/details/publication/pub.1040088698"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:09",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_600.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11634-013-0160-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11634-013-0160-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11634-013-0160-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11634-013-0160-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11634-013-0160-4'
This table displays all metadata directly associated to this object as RDF triples.
168 TRIPLES
22 PREDICATES
70 URIs
47 LITERALS
6 BLANK NODES