Classification of brain activation via spatial Bayesian variable selection in fMRI regression View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-03

AUTHORS

Stefanie Kalus, Philipp G. Sämann, Ludwig Fahrmeir

ABSTRACT

Functional magnetic resonance imaging (fMRI) is the most popular technique in human brain mapping, with statistical parametric mapping (SPM) as a classical benchmark tool for detecting brain activity. Smith and Fahrmeir (J Am Stat Assoc 102(478):417–431, 2007) proposed a competing method based on a spatial Bayesian variable selection in voxelwise linear regressions, with an Ising prior for latent activation indicators. In this article, we alternatively link activation probabilities to two types of latent Gaussian Markov random fields (GMRFs) via a probit model. Statistical inference in resulting high-dimensional hierarchical models is based on Markov chain Monte Carlo approaches, providing posterior estimates of activation probabilities and enhancing formation of activation clusters. Three algorithms are proposed depending on GMRF type and update scheme. An application to an active acoustic oddball experiment and a simulation study show a substantial increase in sensitivity compared to existing fMRI activation detection methods like classical SPM and the Ising model. More... »

PAGES

63-83

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11634-013-0142-6

DOI

http://dx.doi.org/10.1007/s11634-013-0142-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029892754


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, Ludwig-Maximilians-University, Ludwigstr. 33, 80539, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalus", 
        "givenName": "Stefanie", 
        "id": "sg:person.01347315753.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347315753.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Psychiatry", 
          "id": "https://www.grid.ac/institutes/grid.419548.5", 
          "name": [
            "Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00e4mann", 
        "givenName": "Philipp G.", 
        "id": "sg:person.0611417074.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611417074.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, Ludwig-Maximilians-University, Ludwigstr. 33, 80539, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahrmeir", 
        "givenName": "Ludwig", 
        "id": "sg:person.0661512671.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/nimg.1995.1007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001052529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053604000000238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013282294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(01)91492-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015963399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016269575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/5.2.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018440158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(03)00360-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021626736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(03)00360-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021626736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9876.2007.00580.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026244100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(95)01763-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029307194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020792130229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030573060", 
          "https://doi.org/10.1023/a:1020792130229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.12.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031979794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0193(1997)5:4<243::aid-hbm7>3.0.co;2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032245228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/567806.567807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038275124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9876.00206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043619185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9876.00206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043619185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1051068606", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203492024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051068606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479897321076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062882348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214504000001646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000001031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/1061860043010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/106186006x97817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511529993.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087539307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898719604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556605"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03", 
    "datePublishedReg": "2014-03-01", 
    "description": "Functional magnetic resonance imaging (fMRI) is the most popular technique in human brain mapping, with statistical parametric mapping (SPM) as a classical benchmark tool for detecting brain activity. Smith and Fahrmeir (J Am Stat Assoc 102(478):417\u2013431, 2007) proposed a competing method based on a spatial Bayesian variable selection in voxelwise linear regressions, with an Ising prior for latent activation indicators. In this article, we alternatively link activation probabilities to two types of latent Gaussian Markov random fields (GMRFs) via a probit model. Statistical inference in resulting high-dimensional hierarchical models is based on Markov chain Monte Carlo approaches, providing posterior estimates of activation probabilities and enhancing formation of activation clusters. Three algorithms are proposed depending on GMRF type and update scheme. An application to an active acoustic oddball experiment and a simulation study show a substantial increase in sensitivity compared to existing fMRI activation detection methods like classical SPM and the Ising model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11634-013-0142-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1045303", 
        "issn": [
          "1862-5347", 
          "1862-5355"
        ], 
        "name": "Advances in Data Analysis and Classification", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Classification of brain activation via spatial Bayesian variable selection in fMRI regression", 
    "pagination": "63-83", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e684d5bcce278f1d22ace874d5b080d6e6911cd4b494c33f6b2142853162a69"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11634-013-0142-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029892754"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11634-013-0142-6", 
      "https://app.dimensions.ai/details/publication/pub.1029892754"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11634-013-0142-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11634-013-0142-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11634-013-0142-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11634-013-0142-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11634-013-0142-6'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11634-013-0142-6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N797073f2283e4f019103a57f5e261afb
4 schema:citation sg:pub.10.1023/a:1020792130229
5 https://app.dimensions.ai/details/publication/pub.1051068606
6 https://doi.org/10.1002/(sici)1097-0193(1997)5:4<243::aid-hbm7>3.0.co;2-3
7 https://doi.org/10.1006/nimg.1995.1007
8 https://doi.org/10.1016/0304-4076(95)01763-1
9 https://doi.org/10.1016/j.neuroimage.2004.12.035
10 https://doi.org/10.1016/s1053-8119(01)91492-2
11 https://doi.org/10.1016/s1053-8119(03)00360-4
12 https://doi.org/10.1017/cbo9780511529993.007
13 https://doi.org/10.1093/biostatistics/5.2.155
14 https://doi.org/10.1111/1467-9868.00288
15 https://doi.org/10.1111/1467-9876.00206
16 https://doi.org/10.1111/j.1467-9876.2007.00580.x
17 https://doi.org/10.1137/1.9780898719604
18 https://doi.org/10.1137/s0895479897321076
19 https://doi.org/10.1145/567806.567807
20 https://doi.org/10.1198/016214504000001646
21 https://doi.org/10.1198/016214506000001031
22 https://doi.org/10.1198/1061860043010
23 https://doi.org/10.1198/106186006x97817
24 https://doi.org/10.1201/9780203492024
25 https://doi.org/10.1214/009053604000000238
26 schema:datePublished 2014-03
27 schema:datePublishedReg 2014-03-01
28 schema:description Functional magnetic resonance imaging (fMRI) is the most popular technique in human brain mapping, with statistical parametric mapping (SPM) as a classical benchmark tool for detecting brain activity. Smith and Fahrmeir (J Am Stat Assoc 102(478):417–431, 2007) proposed a competing method based on a spatial Bayesian variable selection in voxelwise linear regressions, with an Ising prior for latent activation indicators. In this article, we alternatively link activation probabilities to two types of latent Gaussian Markov random fields (GMRFs) via a probit model. Statistical inference in resulting high-dimensional hierarchical models is based on Markov chain Monte Carlo approaches, providing posterior estimates of activation probabilities and enhancing formation of activation clusters. Three algorithms are proposed depending on GMRF type and update scheme. An application to an active acoustic oddball experiment and a simulation study show a substantial increase in sensitivity compared to existing fMRI activation detection methods like classical SPM and the Ising model.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Na4dd7fa2debe4635a526fdb49c45b254
33 Nb92978ec545f484ead7589f823809fee
34 sg:journal.1045303
35 schema:name Classification of brain activation via spatial Bayesian variable selection in fMRI regression
36 schema:pagination 63-83
37 schema:productId N8c46f540d1564eb88bccef2d308e8d9a
38 Nb5c522c4b0aa44d09612e7c15ed5931b
39 Nd5631004ce83494f82758272ae4d402e
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029892754
41 https://doi.org/10.1007/s11634-013-0142-6
42 schema:sdDatePublished 2019-04-10T21:39
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N0ddf62dccef240c8bcd84db286ec41e1
45 schema:url http://link.springer.com/10.1007%2Fs11634-013-0142-6
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0ddf62dccef240c8bcd84db286ec41e1 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N5c5f496656d642b7a340e1c6ffc0db8b rdf:first sg:person.0661512671.36
52 rdf:rest rdf:nil
53 N797073f2283e4f019103a57f5e261afb rdf:first sg:person.01347315753.30
54 rdf:rest Nbdb94094f4d14aebb0a31e79e75557fc
55 N8c46f540d1564eb88bccef2d308e8d9a schema:name readcube_id
56 schema:value 8e684d5bcce278f1d22ace874d5b080d6e6911cd4b494c33f6b2142853162a69
57 rdf:type schema:PropertyValue
58 Na4dd7fa2debe4635a526fdb49c45b254 schema:volumeNumber 8
59 rdf:type schema:PublicationVolume
60 Nb5c522c4b0aa44d09612e7c15ed5931b schema:name doi
61 schema:value 10.1007/s11634-013-0142-6
62 rdf:type schema:PropertyValue
63 Nb92978ec545f484ead7589f823809fee schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 Nbdb94094f4d14aebb0a31e79e75557fc rdf:first sg:person.0611417074.09
66 rdf:rest N5c5f496656d642b7a340e1c6ffc0db8b
67 Nd5631004ce83494f82758272ae4d402e schema:name dimensions_id
68 schema:value pub.1029892754
69 rdf:type schema:PropertyValue
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
74 schema:name Statistics
75 rdf:type schema:DefinedTerm
76 sg:journal.1045303 schema:issn 1862-5347
77 1862-5355
78 schema:name Advances in Data Analysis and Classification
79 rdf:type schema:Periodical
80 sg:person.01347315753.30 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
81 schema:familyName Kalus
82 schema:givenName Stefanie
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347315753.30
84 rdf:type schema:Person
85 sg:person.0611417074.09 schema:affiliation https://www.grid.ac/institutes/grid.419548.5
86 schema:familyName Sämann
87 schema:givenName Philipp G.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611417074.09
89 rdf:type schema:Person
90 sg:person.0661512671.36 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
91 schema:familyName Fahrmeir
92 schema:givenName Ludwig
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36
94 rdf:type schema:Person
95 sg:pub.10.1023/a:1020792130229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030573060
96 https://doi.org/10.1023/a:1020792130229
97 rdf:type schema:CreativeWork
98 https://app.dimensions.ai/details/publication/pub.1051068606 schema:CreativeWork
99 https://doi.org/10.1002/(sici)1097-0193(1997)5:4<243::aid-hbm7>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032245228
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1006/nimg.1995.1007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001052529
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0304-4076(95)01763-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029307194
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.neuroimage.2004.12.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031979794
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s1053-8119(01)91492-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015963399
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s1053-8119(03)00360-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021626736
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1017/cbo9780511529993.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087539307
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1093/biostatistics/5.2.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018440158
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1111/1467-9868.00288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016269575
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1111/1467-9876.00206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043619185
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1111/j.1467-9876.2007.00580.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026244100
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1137/1.9780898719604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556605
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1137/s0895479897321076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882348
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1145/567806.567807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038275124
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1198/016214504000001646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198290
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1198/016214506000001031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198572
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1198/1061860043010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199409
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1198/106186006x97817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199560
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1201/9780203492024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051068606
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1214/009053604000000238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013282294
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.419548.5 schema:alternateName Max Planck Institute of Psychiatry
140 schema:name Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804, München, Germany
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
143 schema:name Department of Statistics, Ludwig-Maximilians-University, Ludwigstr. 33, 80539, München, Germany
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...