Contribution of the FPGAs for Complex Control Algorithms: Sensorless DTFC with an EKF of an Induction Motor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Saber Krim, Soufien Gdaim, Abdellatif Mtibaa, Mohamed Faouzi Mimouni

ABSTRACT

In a conventional direct torque control (CDTC) of the induction motor drive, the electromagnetic torque and the stator flux are characterized by high ripples. In order to reduce the undesired ripples, several methods are used in the literature. Nevertheless, these methods increase the algorithm complexity and dependency on the machine parameters such as the space vector modulation (SVM). The fuzzy logic control method is utilized in this work to decrease these ripples. Moreover, to eliminate the mechanical sensor the extended kalman filter (EKF) is used, in order to reduce the cost of the system and the rate of maintenance. Furthermore, in the domain of controlling the real-time induction motor drives, two principal digital devices are used such as the hardware (FPGA) and the digital signal processing (DSP). The latter is a software solution featured by a sequential processing that increases the execution time. However, the FPGA is featured by a high processing speed because of its parallel processing. Therefore, using the FPGA it is possible to implement complex algorithms with low execution time and to enhance the control bandwidth. The large bandwidth is the key issue to increase the system performances. This paper presents the interest of utilizing the FPGAs to implement complex control algorithms of electrical systems in real time. The suggested sensorless direct torque control using the fuzzy logic (DTFC) of an induction motor is successfully designed and implemented on an FPGA Virtex 5 using xilinx system generator. The simulation and implementation results show proposed approach’s performances in terms of ripples, stator current harmonic waves, execution time, and short design time. More... »

PAGES

226-237

References to SciGraph publications

  • 2004-10. Simplified EKF based sensorless direct torque control of permanent magnet brushless AC drives in INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING
  • 2013-08. Robust Sliding Mode Control Using Adaptive Switching Gain for Induction Motors in INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING
  • 2014-08. Improving Asynchronous Motor Speed and Flux Loop Control by Using Hybrid Fuzzy-SMC Controllers in INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING
  • 2010-02-24. Using Xilinx System Generator for Real Time Hardware Co-simulation of Video Processing System in ELECTRONIC ENGINEERING AND COMPUTING TECHNOLOGY
  • 2013-06. Modeling and Adaptive Sliding Mode Control of the Catastrophic Course of a High-speed Underwater Vehicle in INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11633-016-1017-z

    DOI

    http://dx.doi.org/10.1007/s11633-016-1017-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007701858


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Sousse", 
              "id": "https://www.grid.ac/institutes/grid.7900.e", 
              "name": [
                "Laboratory of Electronics and Microelectronics EE, Faculty of Sciences, University of Monastir, Monastir, Tunisia", 
                "Research Unit \u201cIndustrial Systems Study and Renewable Energy\u201d, University of Monastir, Monastir, Tunisia", 
                "Polytechnic School of Engineering (PSE), University of Sousse, Sousse, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krim", 
            "givenName": "Saber", 
            "id": "sg:person.013136231266.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013136231266.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Monastir", 
              "id": "https://www.grid.ac/institutes/grid.411838.7", 
              "name": [
                "Research Unit \u201cIndustrial Systems Study and Renewable Energy\u201d, University of Monastir, Monastir, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gdaim", 
            "givenName": "Soufien", 
            "id": "sg:person.013111263433.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013111263433.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Monastir", 
              "id": "https://www.grid.ac/institutes/grid.411838.7", 
              "name": [
                "Laboratory of Electronics and Microelectronics EE, Faculty of Sciences, University of Monastir, Monastir, Tunisia", 
                "National Engineering School, University of Monastir, Monastir, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mtibaa", 
            "givenName": "Abdellatif", 
            "id": "sg:person.012661166623.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661166623.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Monastir", 
              "id": "https://www.grid.ac/institutes/grid.411838.7", 
              "name": [
                "Research Unit \u201cIndustrial Systems Study and Renewable Energy\u201d, University of Monastir, Monastir, Tunisia", 
                "National Engineering School, University of Monastir, Monastir, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mimouni", 
            "givenName": "Mohamed Faouzi", 
            "id": "sg:person.015117075573.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015117075573.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11633-014-0801-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012460938", 
              "https://doi.org/10.1007/s11633-014-0801-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11633-013-0725-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015737010", 
              "https://doi.org/10.1007/s11633-013-0725-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11633-013-0714-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021511053", 
              "https://doi.org/10.1007/s11633-013-0714-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11633-004-0035-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032743250", 
              "https://doi.org/10.1007/s11633-004-0035-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-8776-8_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050590476", 
              "https://doi.org/10.1007/978-90-481-8776-8_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-8776-8_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050590476", 
              "https://doi.org/10.1007/978-90-481-8776-8_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/60.937200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061198158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/63.17963", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061203650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tec.2007.914386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061589354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tia.1986.4504799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061616910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tia.2003.813727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061617410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tia.2003.818991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061617507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tia.2003.821667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061617528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tia.2004.824490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061617563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2004.831717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061622189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2004.831722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061622192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2008.2007480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2009.2015749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2009.2030815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061624099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpel.2002.802183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061755334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpel.2007.909189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061756337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpel.2007.915636", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061756462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpel.2009.2014867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061756866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpel.2010.2043543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061757215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpel.2011.2159516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061757749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.11591/ijpeds.v5.i3.pp293-304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084233906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/optim.2012.6231993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093560300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/speedam.2012.6264543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093599509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iecon.2008.4758398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093941863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pesc.2005.1581843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094323008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/epe.2007.4417444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095047323"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "In a conventional direct torque control (CDTC) of the induction motor drive, the electromagnetic torque and the stator flux are characterized by high ripples. In order to reduce the undesired ripples, several methods are used in the literature. Nevertheless, these methods increase the algorithm complexity and dependency on the machine parameters such as the space vector modulation (SVM). The fuzzy logic control method is utilized in this work to decrease these ripples. Moreover, to eliminate the mechanical sensor the extended kalman filter (EKF) is used, in order to reduce the cost of the system and the rate of maintenance. Furthermore, in the domain of controlling the real-time induction motor drives, two principal digital devices are used such as the hardware (FPGA) and the digital signal processing (DSP). The latter is a software solution featured by a sequential processing that increases the execution time. However, the FPGA is featured by a high processing speed because of its parallel processing. Therefore, using the FPGA it is possible to implement complex algorithms with low execution time and to enhance the control bandwidth. The large bandwidth is the key issue to increase the system performances. This paper presents the interest of utilizing the FPGAs to implement complex control algorithms of electrical systems in real time. The suggested sensorless direct torque control using the fuzzy logic (DTFC) of an induction motor is successfully designed and implemented on an FPGA Virtex 5 using xilinx system generator. The simulation and implementation results show proposed approach\u2019s performances in terms of ripples, stator current harmonic waves, execution time, and short design time.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11633-016-1017-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136120", 
            "issn": [
              "1476-8186", 
              "1751-8520"
            ], 
            "name": "International Journal of Automation and Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Contribution of the FPGAs for Complex Control Algorithms: Sensorless DTFC with an EKF of an Induction Motor", 
        "pagination": "226-237", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "24afa71fa5d4058a9d3de6f8be72dc8acb34e642bbacc1054bdd6d45c68315da"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11633-016-1017-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007701858"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11633-016-1017-z", 
          "https://app.dimensions.ai/details/publication/pub.1007701858"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70027_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11633-016-1017-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11633-016-1017-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11633-016-1017-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11633-016-1017-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11633-016-1017-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11633-016-1017-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N2d05eef619dd467ca96dbf468aeb51ae
    4 schema:citation sg:pub.10.1007/978-90-481-8776-8_20
    5 sg:pub.10.1007/s11633-004-0035-4
    6 sg:pub.10.1007/s11633-013-0714-0
    7 sg:pub.10.1007/s11633-013-0725-x
    8 sg:pub.10.1007/s11633-014-0801-x
    9 https://doi.org/10.1109/60.937200
    10 https://doi.org/10.1109/63.17963
    11 https://doi.org/10.1109/epe.2007.4417444
    12 https://doi.org/10.1109/iecon.2008.4758398
    13 https://doi.org/10.1109/optim.2012.6231993
    14 https://doi.org/10.1109/pesc.2005.1581843
    15 https://doi.org/10.1109/speedam.2012.6264543
    16 https://doi.org/10.1109/tec.2007.914386
    17 https://doi.org/10.1109/tia.1986.4504799
    18 https://doi.org/10.1109/tia.2003.813727
    19 https://doi.org/10.1109/tia.2003.818991
    20 https://doi.org/10.1109/tia.2003.821667
    21 https://doi.org/10.1109/tia.2004.824490
    22 https://doi.org/10.1109/tie.2004.831717
    23 https://doi.org/10.1109/tie.2004.831722
    24 https://doi.org/10.1109/tie.2008.2007480
    25 https://doi.org/10.1109/tie.2009.2015749
    26 https://doi.org/10.1109/tie.2009.2030815
    27 https://doi.org/10.1109/tpel.2002.802183
    28 https://doi.org/10.1109/tpel.2007.909189
    29 https://doi.org/10.1109/tpel.2007.915636
    30 https://doi.org/10.1109/tpel.2009.2014867
    31 https://doi.org/10.1109/tpel.2010.2043543
    32 https://doi.org/10.1109/tpel.2011.2159516
    33 https://doi.org/10.11591/ijpeds.v5.i3.pp293-304
    34 schema:datePublished 2019-04
    35 schema:datePublishedReg 2019-04-01
    36 schema:description In a conventional direct torque control (CDTC) of the induction motor drive, the electromagnetic torque and the stator flux are characterized by high ripples. In order to reduce the undesired ripples, several methods are used in the literature. Nevertheless, these methods increase the algorithm complexity and dependency on the machine parameters such as the space vector modulation (SVM). The fuzzy logic control method is utilized in this work to decrease these ripples. Moreover, to eliminate the mechanical sensor the extended kalman filter (EKF) is used, in order to reduce the cost of the system and the rate of maintenance. Furthermore, in the domain of controlling the real-time induction motor drives, two principal digital devices are used such as the hardware (FPGA) and the digital signal processing (DSP). The latter is a software solution featured by a sequential processing that increases the execution time. However, the FPGA is featured by a high processing speed because of its parallel processing. Therefore, using the FPGA it is possible to implement complex algorithms with low execution time and to enhance the control bandwidth. The large bandwidth is the key issue to increase the system performances. This paper presents the interest of utilizing the FPGAs to implement complex control algorithms of electrical systems in real time. The suggested sensorless direct torque control using the fuzzy logic (DTFC) of an induction motor is successfully designed and implemented on an FPGA Virtex 5 using xilinx system generator. The simulation and implementation results show proposed approach’s performances in terms of ripples, stator current harmonic waves, execution time, and short design time.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N4f2f7d92e02242fc92bfb3660f6c0734
    41 Ndfe105be81d64382b638e667352dff52
    42 sg:journal.1136120
    43 schema:name Contribution of the FPGAs for Complex Control Algorithms: Sensorless DTFC with an EKF of an Induction Motor
    44 schema:pagination 226-237
    45 schema:productId N8118f96dcbfe4099b7d54478c883ca26
    46 N9656588fb65f4c2fa09eff08b05dc2a9
    47 Nc13a1463800c4ee7a94eb5203cda5603
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007701858
    49 https://doi.org/10.1007/s11633-016-1017-z
    50 schema:sdDatePublished 2019-04-11T12:35
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Na45831d5bf73484b92c3a73d2cf7cb7d
    53 schema:url https://link.springer.com/10.1007%2Fs11633-016-1017-z
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N2d05eef619dd467ca96dbf468aeb51ae rdf:first sg:person.013136231266.29
    58 rdf:rest N645fc6c4d7f9474982b79003beee0d7a
    59 N4f2f7d92e02242fc92bfb3660f6c0734 schema:volumeNumber 16
    60 rdf:type schema:PublicationVolume
    61 N645fc6c4d7f9474982b79003beee0d7a rdf:first sg:person.013111263433.15
    62 rdf:rest Nd4271d013fbf4e07bec78b9b917bccce
    63 N8118f96dcbfe4099b7d54478c883ca26 schema:name readcube_id
    64 schema:value 24afa71fa5d4058a9d3de6f8be72dc8acb34e642bbacc1054bdd6d45c68315da
    65 rdf:type schema:PropertyValue
    66 N9656588fb65f4c2fa09eff08b05dc2a9 schema:name doi
    67 schema:value 10.1007/s11633-016-1017-z
    68 rdf:type schema:PropertyValue
    69 Na45831d5bf73484b92c3a73d2cf7cb7d schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 Nc13a1463800c4ee7a94eb5203cda5603 schema:name dimensions_id
    72 schema:value pub.1007701858
    73 rdf:type schema:PropertyValue
    74 Nd4271d013fbf4e07bec78b9b917bccce rdf:first sg:person.012661166623.16
    75 rdf:rest Nea117c5695394965b6579550dd31d5e0
    76 Ndfe105be81d64382b638e667352dff52 schema:issueNumber 2
    77 rdf:type schema:PublicationIssue
    78 Nea117c5695394965b6579550dd31d5e0 rdf:first sg:person.015117075573.34
    79 rdf:rest rdf:nil
    80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Information and Computing Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Artificial Intelligence and Image Processing
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1136120 schema:issn 1476-8186
    87 1751-8520
    88 schema:name International Journal of Automation and Computing
    89 rdf:type schema:Periodical
    90 sg:person.012661166623.16 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
    91 schema:familyName Mtibaa
    92 schema:givenName Abdellatif
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661166623.16
    94 rdf:type schema:Person
    95 sg:person.013111263433.15 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
    96 schema:familyName Gdaim
    97 schema:givenName Soufien
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013111263433.15
    99 rdf:type schema:Person
    100 sg:person.013136231266.29 schema:affiliation https://www.grid.ac/institutes/grid.7900.e
    101 schema:familyName Krim
    102 schema:givenName Saber
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013136231266.29
    104 rdf:type schema:Person
    105 sg:person.015117075573.34 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
    106 schema:familyName Mimouni
    107 schema:givenName Mohamed Faouzi
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015117075573.34
    109 rdf:type schema:Person
    110 sg:pub.10.1007/978-90-481-8776-8_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050590476
    111 https://doi.org/10.1007/978-90-481-8776-8_20
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s11633-004-0035-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032743250
    114 https://doi.org/10.1007/s11633-004-0035-4
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s11633-013-0714-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021511053
    117 https://doi.org/10.1007/s11633-013-0714-0
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s11633-013-0725-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015737010
    120 https://doi.org/10.1007/s11633-013-0725-x
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s11633-014-0801-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012460938
    123 https://doi.org/10.1007/s11633-014-0801-x
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/60.937200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061198158
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/63.17963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061203650
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/epe.2007.4417444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095047323
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/iecon.2008.4758398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093941863
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/optim.2012.6231993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093560300
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/pesc.2005.1581843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094323008
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/speedam.2012.6264543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093599509
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/tec.2007.914386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061589354
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/tia.1986.4504799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061616910
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/tia.2003.813727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061617410
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/tia.2003.818991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061617507
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/tia.2003.821667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061617528
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/tia.2004.824490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061617563
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/tie.2004.831717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061622189
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/tie.2004.831722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061622192
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/tie.2008.2007480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623301
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/tie.2009.2015749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623727
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/tie.2009.2030815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061624099
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/tpel.2002.802183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061755334
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/tpel.2007.909189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061756337
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/tpel.2007.915636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061756462
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/tpel.2009.2014867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061756866
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/tpel.2010.2043543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061757215
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1109/tpel.2011.2159516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061757749
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.11591/ijpeds.v5.i3.pp293-304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084233906
    174 rdf:type schema:CreativeWork
    175 https://www.grid.ac/institutes/grid.411838.7 schema:alternateName University of Monastir
    176 schema:name Laboratory of Electronics and Microelectronics EE, Faculty of Sciences, University of Monastir, Monastir, Tunisia
    177 National Engineering School, University of Monastir, Monastir, Tunisia
    178 Research Unit “Industrial Systems Study and Renewable Energy”, University of Monastir, Monastir, Tunisia
    179 rdf:type schema:Organization
    180 https://www.grid.ac/institutes/grid.7900.e schema:alternateName University of Sousse
    181 schema:name Laboratory of Electronics and Microelectronics EE, Faculty of Sciences, University of Monastir, Monastir, Tunisia
    182 Polytechnic School of Engineering (PSE), University of Sousse, Sousse, Tunisia
    183 Research Unit “Industrial Systems Study and Renewable Energy”, University of Monastir, Monastir, Tunisia
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...