Performance Assessment of Air-Cooled Steam Condenser with Guide Vane Cascade View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-26

AUTHORS

Xuelei Zhang, Yunpeng Li, Haiping Chen

ABSTRACT

Ambient wind has an unfavourable impact on air-cooled steam condenser (ACSC) performance. A new measure to improve ACSC performance is proposed by setting a diffusion type guide vane cascade beneath the ACSC platform. The numerical models are developed to illustrate the effects of diffusion type guide vane cascade on ACSC performance. The simulation results show that this vane cascade can cause the increases in coolant flows across almost all fans due to its diffusion function and lower flow resistance. Meanwhile, the guide vane cascade also decreases the fan inlet temperatures because of the uniform flow field around the condenser cells. Comparing with the case without guide device, the overall heat transfer efficiency is increased by 11.2% for guide vane cascade case under the condition of 9 m/s. The heat transfer efficiency firstly enhances and then decreases with decreasing stagger angle of guide vane under a certain wind speed. The optimum stagger angle corresponding to the maximum heat transfer efficiency is about 65.5°. The heat transfer efficiency always enhances as increasing vane cascade height, and a vane cascade with 20 m to 30 m height may be suitable to the ACSC as considering the cost. More... »

PAGES

1-11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11630-019-1116-6

DOI

http://dx.doi.org/10.1007/s11630-019-1116-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113005652


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "North China Electric Power University", 
          "id": "https://www.grid.ac/institutes/grid.261049.8", 
          "name": [
            "School of Energy, Power and Mechanical Engineering, North China Electric Power University, 071003, Baoding, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xuelei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North China Electric Power University", 
          "id": "https://www.grid.ac/institutes/grid.261049.8", 
          "name": [
            "School of Energy, Power and Mechanical Engineering, North China Electric Power University, 071003, Baoding, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yunpeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North China Electric Power University", 
          "id": "https://www.grid.ac/institutes/grid.261049.8", 
          "name": [
            "School of Energy, Power and Mechanical Engineering, North China Electric Power University, 071003, Baoding, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Haiping", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2010.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006093631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2014.01.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007327293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013396745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013396745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013396745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013396745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-011-4492-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015251372", 
          "https://doi.org/10.1007/s11431-011-4492-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2008.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019416850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2013.08.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025679696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031055564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-016-0895-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035685828", 
          "https://doi.org/10.1007/s11630-016-0895-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-016-0895-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035685828", 
          "https://doi.org/10.1007/s11630-016-0895-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036380637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2012.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039164329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2013.12.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041578187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043182401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2010.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053284163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/jenhheattransf.2011002707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068145229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086125098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092186521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092957782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-018-0982-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100712602", 
          "https://doi.org/10.1007/s11630-018-0982-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-26", 
    "datePublishedReg": "2019-03-26", 
    "description": "Ambient wind has an unfavourable impact on air-cooled steam condenser (ACSC) performance. A new measure to improve ACSC performance is proposed by setting a diffusion type guide vane cascade beneath the ACSC platform. The numerical models are developed to illustrate the effects of diffusion type guide vane cascade on ACSC performance. The simulation results show that this vane cascade can cause the increases in coolant flows across almost all fans due to its diffusion function and lower flow resistance. Meanwhile, the guide vane cascade also decreases the fan inlet temperatures because of the uniform flow field around the condenser cells. Comparing with the case without guide device, the overall heat transfer efficiency is increased by 11.2% for guide vane cascade case under the condition of 9 m/s. The heat transfer efficiency firstly enhances and then decreases with decreasing stagger angle of guide vane under a certain wind speed. The optimum stagger angle corresponding to the maximum heat transfer efficiency is about 65.5\u00b0. The heat transfer efficiency always enhances as increasing vane cascade height, and a vane cascade with 20 m to 30 m height may be suitable to the ACSC as considering the cost.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11630-019-1116-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136366", 
        "issn": [
          "1003-2169", 
          "1993-033X"
        ], 
        "name": "Journal of Thermal Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Performance Assessment of Air-Cooled Steam Condenser with Guide Vane Cascade", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "43612e0fbf5caedad32629b98cfa59e4078fba962d3c7916ab458a34d7c80bb6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11630-019-1116-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113005652"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11630-019-1116-6", 
      "https://app.dimensions.ai/details/publication/pub.1113005652"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88233_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11630-019-1116-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1116-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1116-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1116-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1116-6'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      42 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11630-019-1116-6 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N7ceb3bbcd1da492787bfbf91d4b798c2
4 schema:citation sg:pub.10.1007/s11431-011-4492-z
5 sg:pub.10.1007/s11630-016-0895-2
6 sg:pub.10.1007/s11630-018-0982-7
7 https://doi.org/10.1016/j.apenergy.2012.06.006
8 https://doi.org/10.1016/j.applthermaleng.2008.09.011
9 https://doi.org/10.1016/j.applthermaleng.2010.07.015
10 https://doi.org/10.1016/j.applthermaleng.2010.07.017
11 https://doi.org/10.1016/j.applthermaleng.2013.12.068
12 https://doi.org/10.1016/j.applthermaleng.2015.04.004
13 https://doi.org/10.1016/j.applthermaleng.2015.05.065
14 https://doi.org/10.1016/j.applthermaleng.2015.07.030
15 https://doi.org/10.1016/j.applthermaleng.2015.12.018
16 https://doi.org/10.1016/j.applthermaleng.2017.06.001
17 https://doi.org/10.1016/j.energy.2013.08.032
18 https://doi.org/10.1016/j.energy.2014.01.086
19 https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.139
20 https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.071
21 https://doi.org/10.1615/jenhheattransf.2011002707
22 schema:datePublished 2019-03-26
23 schema:datePublishedReg 2019-03-26
24 schema:description Ambient wind has an unfavourable impact on air-cooled steam condenser (ACSC) performance. A new measure to improve ACSC performance is proposed by setting a diffusion type guide vane cascade beneath the ACSC platform. The numerical models are developed to illustrate the effects of diffusion type guide vane cascade on ACSC performance. The simulation results show that this vane cascade can cause the increases in coolant flows across almost all fans due to its diffusion function and lower flow resistance. Meanwhile, the guide vane cascade also decreases the fan inlet temperatures because of the uniform flow field around the condenser cells. Comparing with the case without guide device, the overall heat transfer efficiency is increased by 11.2% for guide vane cascade case under the condition of 9 m/s. The heat transfer efficiency firstly enhances and then decreases with decreasing stagger angle of guide vane under a certain wind speed. The optimum stagger angle corresponding to the maximum heat transfer efficiency is about 65.5°. The heat transfer efficiency always enhances as increasing vane cascade height, and a vane cascade with 20 m to 30 m height may be suitable to the ACSC as considering the cost.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf sg:journal.1136366
29 schema:name Performance Assessment of Air-Cooled Steam Condenser with Guide Vane Cascade
30 schema:pagination 1-11
31 schema:productId N00dd5d247970406eb30cf099d9e9fac3
32 N62a3011711064be6895c2da9a1ada898
33 Nd96f9f67f14140698ba723d9fde95175
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113005652
35 https://doi.org/10.1007/s11630-019-1116-6
36 schema:sdDatePublished 2019-04-11T13:09
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N7c67e677b77f4832afe9c3fb750c33cf
39 schema:url https://link.springer.com/10.1007%2Fs11630-019-1116-6
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N00dd5d247970406eb30cf099d9e9fac3 schema:name doi
44 schema:value 10.1007/s11630-019-1116-6
45 rdf:type schema:PropertyValue
46 N28b455e5269c40088e678185099df100 rdf:first Na45b019b67b7435ca25f894b79e6b0dc
47 rdf:rest rdf:nil
48 N62a3011711064be6895c2da9a1ada898 schema:name readcube_id
49 schema:value 43612e0fbf5caedad32629b98cfa59e4078fba962d3c7916ab458a34d7c80bb6
50 rdf:type schema:PropertyValue
51 N7c67e677b77f4832afe9c3fb750c33cf schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N7ceb3bbcd1da492787bfbf91d4b798c2 rdf:first Nbb8fc090227c46438495c921af8c8405
54 rdf:rest Na607efabc0614329a013b9a2c48f8e79
55 N9ad08400eb214074983491c1a664c27f schema:affiliation https://www.grid.ac/institutes/grid.261049.8
56 schema:familyName Li
57 schema:givenName Yunpeng
58 rdf:type schema:Person
59 Na45b019b67b7435ca25f894b79e6b0dc schema:affiliation https://www.grid.ac/institutes/grid.261049.8
60 schema:familyName Chen
61 schema:givenName Haiping
62 rdf:type schema:Person
63 Na607efabc0614329a013b9a2c48f8e79 rdf:first N9ad08400eb214074983491c1a664c27f
64 rdf:rest N28b455e5269c40088e678185099df100
65 Nbb8fc090227c46438495c921af8c8405 schema:affiliation https://www.grid.ac/institutes/grid.261049.8
66 schema:familyName Zhang
67 schema:givenName Xuelei
68 rdf:type schema:Person
69 Nd96f9f67f14140698ba723d9fde95175 schema:name dimensions_id
70 schema:value pub.1113005652
71 rdf:type schema:PropertyValue
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
76 schema:name Interdisciplinary Engineering
77 rdf:type schema:DefinedTerm
78 sg:journal.1136366 schema:issn 1003-2169
79 1993-033X
80 schema:name Journal of Thermal Science
81 rdf:type schema:Periodical
82 sg:pub.10.1007/s11431-011-4492-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015251372
83 https://doi.org/10.1007/s11431-011-4492-z
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s11630-016-0895-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035685828
86 https://doi.org/10.1007/s11630-016-0895-2
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s11630-018-0982-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100712602
89 https://doi.org/10.1007/s11630-018-0982-7
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.apenergy.2012.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039164329
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.applthermaleng.2008.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019416850
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.applthermaleng.2010.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006093631
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.applthermaleng.2010.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053284163
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.applthermaleng.2013.12.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041578187
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.applthermaleng.2015.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036380637
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.applthermaleng.2015.05.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013396745
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.applthermaleng.2015.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031055564
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.applthermaleng.2015.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043182401
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.applthermaleng.2017.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086125098
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.energy.2013.08.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025679696
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.energy.2014.01.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007327293
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092186521
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092957782
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1615/jenhheattransf.2011002707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068145229
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.261049.8 schema:alternateName North China Electric Power University
122 schema:name School of Energy, Power and Mechanical Engineering, North China Electric Power University, 071003, Baoding, China
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...