Performance of S-CO2 Brayton Cycle and Organic Rankine Cycle (ORC) Combined System Considering the Diurnal Distribution of Solar Radiation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-21

AUTHORS

Wei Gao, Mingyu Yao, Yong Chen, Hongzhi Li, Yifan Zhang, Lei Zhang

ABSTRACT

This paper researches the performance of a novel supercritical carbon dioxide (S-CO2) Brayton cycle and organic Rankine cycle (ORC) combined system with a theoretical solar radiation diurnal distribution. The new system supplies all solar energy to a S-CO2 Brayton cycle heater, where heat releasing from the S-CO2 cooler is stored in the thermal storage system which is supplied to the ORC. Therefore, solar energy is kept at a high temperature, while at the same time the thermal storage system temperature is low. This paper builds a simple solar radiation diurnal distribution model. The maximum continuous working time, mass of thermal storage material, and parameter variations of the two cycles are simulated with the solar radiation diurnal distribution model. 10 organic fluids and 5 representative thermal storage materials are compared in this paper, with the mass and volume of these materials being shown. The longer the continuous working time is, the lower the system thermal efficiency is. The maximum continuous working time can reach 19.1 hours if the system provides a constant power output. At the same time, the system efficiency can be kept above 38% for most fluids. More... »

PAGES

1-9

Journal

TITLE

Journal of Thermal Science

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11630-019-1114-8

DOI

http://dx.doi.org/10.1007/s11630-019-1114-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112918935


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Mingyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hongzhi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yifan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0038-092x(81)90224-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000400655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2011.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004595250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2014.05.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010633007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2011.07.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019486850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-938x(00)00108-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031333850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2016.09.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033435101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2012.06.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046185596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.supflu.2013.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046422373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2010.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051300405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2012.11.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051689160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2013.12.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051906042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2011.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052400536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.06.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053386075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2011.2163739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4024030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062149348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4025700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062151016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ep.12564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083899591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/gt2012-68932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092838547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/isec2004-65144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092848693"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-21", 
    "datePublishedReg": "2019-03-21", 
    "description": "This paper researches the performance of a novel supercritical carbon dioxide (S-CO2) Brayton cycle and organic Rankine cycle (ORC) combined system with a theoretical solar radiation diurnal distribution. The new system supplies all solar energy to a S-CO2 Brayton cycle heater, where heat releasing from the S-CO2 cooler is stored in the thermal storage system which is supplied to the ORC. Therefore, solar energy is kept at a high temperature, while at the same time the thermal storage system temperature is low. This paper builds a simple solar radiation diurnal distribution model. The maximum continuous working time, mass of thermal storage material, and parameter variations of the two cycles are simulated with the solar radiation diurnal distribution model. 10 organic fluids and 5 representative thermal storage materials are compared in this paper, with the mass and volume of these materials being shown. The longer the continuous working time is, the lower the system thermal efficiency is. The maximum continuous working time can reach 19.1 hours if the system provides a constant power output. At the same time, the system efficiency can be kept above 38% for most fluids.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11630-019-1114-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136366", 
        "issn": [
          "1003-2169", 
          "1993-033X"
        ], 
        "name": "Journal of Thermal Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Performance of S-CO2 Brayton Cycle and Organic Rankine Cycle (ORC) Combined System Considering the Diurnal Distribution of Solar Radiation", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "706eb1aed56b0319a9f7d5546c04b3b63290a6b31e8501e6d23357b2f12dfbcc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11630-019-1114-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112918935"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11630-019-1114-8", 
      "https://app.dimensions.ai/details/publication/pub.1112918935"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72835_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11630-019-1114-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1114-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1114-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1114-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1114-8'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      43 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11630-019-1114-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6ac2b1b0148d4ca3b7e37f0d0fab49f6
4 schema:citation https://doi.org/10.1002/ep.12564
5 https://doi.org/10.1016/0038-092x(81)90224-3
6 https://doi.org/10.1016/j.applthermaleng.2010.11.008
7 https://doi.org/10.1016/j.applthermaleng.2012.06.041
8 https://doi.org/10.1016/j.applthermaleng.2016.06.152
9 https://doi.org/10.1016/j.energy.2012.11.029
10 https://doi.org/10.1016/j.nucengdes.2013.12.039
11 https://doi.org/10.1016/j.nucengdes.2014.05.032
12 https://doi.org/10.1016/j.rser.2011.07.135
13 https://doi.org/10.1016/j.rser.2016.09.122
14 https://doi.org/10.1016/j.solener.2011.02.010
15 https://doi.org/10.1016/j.solener.2011.12.007
16 https://doi.org/10.1016/j.supflu.2013.01.010
17 https://doi.org/10.1016/s0010-938x(00)00108-6
18 https://doi.org/10.1109/jproc.2011.2163739
19 https://doi.org/10.1115/1.4024030
20 https://doi.org/10.1115/1.4025700
21 https://doi.org/10.1115/gt2012-68932
22 https://doi.org/10.1115/isec2004-65144
23 schema:datePublished 2019-03-21
24 schema:datePublishedReg 2019-03-21
25 schema:description This paper researches the performance of a novel supercritical carbon dioxide (S-CO2) Brayton cycle and organic Rankine cycle (ORC) combined system with a theoretical solar radiation diurnal distribution. The new system supplies all solar energy to a S-CO2 Brayton cycle heater, where heat releasing from the S-CO2 cooler is stored in the thermal storage system which is supplied to the ORC. Therefore, solar energy is kept at a high temperature, while at the same time the thermal storage system temperature is low. This paper builds a simple solar radiation diurnal distribution model. The maximum continuous working time, mass of thermal storage material, and parameter variations of the two cycles are simulated with the solar radiation diurnal distribution model. 10 organic fluids and 5 representative thermal storage materials are compared in this paper, with the mass and volume of these materials being shown. The longer the continuous working time is, the lower the system thermal efficiency is. The maximum continuous working time can reach 19.1 hours if the system provides a constant power output. At the same time, the system efficiency can be kept above 38% for most fluids.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf sg:journal.1136366
30 schema:name Performance of S-CO2 Brayton Cycle and Organic Rankine Cycle (ORC) Combined System Considering the Diurnal Distribution of Solar Radiation
31 schema:pagination 1-9
32 schema:productId N09461917f54a44ab875e68b7c63af89a
33 N474c9e2750344b10960822ac1895490e
34 N5ad44677761d4173b281d31d6ecb1820
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112918935
36 https://doi.org/10.1007/s11630-019-1114-8
37 schema:sdDatePublished 2019-04-11T12:52
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nbee84b4dc40a4229a784c4317d39de60
40 schema:url https://link.springer.com/10.1007%2Fs11630-019-1114-8
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N01e0b65d1d034e8e9c2c57d6aa0cb024 schema:affiliation https://www.grid.ac/institutes/grid.495527.8
45 schema:familyName Yao
46 schema:givenName Mingyu
47 rdf:type schema:Person
48 N02438eadcfb24f7c95b124fa27f7fa07 rdf:first N01e0b65d1d034e8e9c2c57d6aa0cb024
49 rdf:rest N5d9b0d9fefbf410691d06374060d1597
50 N09461917f54a44ab875e68b7c63af89a schema:name doi
51 schema:value 10.1007/s11630-019-1114-8
52 rdf:type schema:PropertyValue
53 N0a798edfeb814b6c8c72ce7952f013fe rdf:first N8a72ac92bf8b47cea7a71e559f47061c
54 rdf:rest Nbc1537db8d5643cea1e1ecf397495f2b
55 N1a645623b5c6451bb10bec0d44edccf1 schema:affiliation https://www.grid.ac/institutes/grid.495527.8
56 schema:familyName Gao
57 schema:givenName Wei
58 rdf:type schema:Person
59 N3b0047a079224d7dae1b7222b33596cb schema:affiliation https://www.grid.ac/institutes/grid.495527.8
60 schema:familyName Zhang
61 schema:givenName Lei
62 rdf:type schema:Person
63 N3d83ad57b4594947aa3497e80946426a schema:affiliation https://www.grid.ac/institutes/grid.495527.8
64 schema:familyName Zhang
65 schema:givenName Yifan
66 rdf:type schema:Person
67 N474c9e2750344b10960822ac1895490e schema:name dimensions_id
68 schema:value pub.1112918935
69 rdf:type schema:PropertyValue
70 N5ad44677761d4173b281d31d6ecb1820 schema:name readcube_id
71 schema:value 706eb1aed56b0319a9f7d5546c04b3b63290a6b31e8501e6d23357b2f12dfbcc
72 rdf:type schema:PropertyValue
73 N5d9b0d9fefbf410691d06374060d1597 rdf:first Nbe4c11cd5eae4af1b63015a08330d8bf
74 rdf:rest N0a798edfeb814b6c8c72ce7952f013fe
75 N6ac2b1b0148d4ca3b7e37f0d0fab49f6 rdf:first N1a645623b5c6451bb10bec0d44edccf1
76 rdf:rest N02438eadcfb24f7c95b124fa27f7fa07
77 N8946c46d9ddd4e1199281640058fc996 rdf:first N3b0047a079224d7dae1b7222b33596cb
78 rdf:rest rdf:nil
79 N8a72ac92bf8b47cea7a71e559f47061c schema:affiliation https://www.grid.ac/institutes/grid.495527.8
80 schema:familyName Li
81 schema:givenName Hongzhi
82 rdf:type schema:Person
83 Nbc1537db8d5643cea1e1ecf397495f2b rdf:first N3d83ad57b4594947aa3497e80946426a
84 rdf:rest N8946c46d9ddd4e1199281640058fc996
85 Nbe4c11cd5eae4af1b63015a08330d8bf schema:affiliation https://www.grid.ac/institutes/grid.495527.8
86 schema:familyName Chen
87 schema:givenName Yong
88 rdf:type schema:Person
89 Nbee84b4dc40a4229a784c4317d39de60 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
92 schema:name Engineering
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
95 schema:name Materials Engineering
96 rdf:type schema:DefinedTerm
97 sg:journal.1136366 schema:issn 1003-2169
98 1993-033X
99 schema:name Journal of Thermal Science
100 rdf:type schema:Periodical
101 https://doi.org/10.1002/ep.12564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083899591
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0038-092x(81)90224-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000400655
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.applthermaleng.2010.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051300405
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.applthermaleng.2012.06.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046185596
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.applthermaleng.2016.06.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053386075
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.energy.2012.11.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051689160
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.nucengdes.2013.12.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051906042
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.nucengdes.2014.05.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010633007
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.rser.2011.07.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019486850
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.rser.2016.09.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033435101
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.solener.2011.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004595250
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.solener.2011.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052400536
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.supflu.2013.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046422373
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0010-938x(00)00108-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031333850
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/jproc.2011.2163739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297482
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1115/1.4024030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062149348
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1115/1.4025700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062151016
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1115/gt2012-68932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092838547
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1115/isec2004-65144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092848693
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.495527.8 schema:alternateName Thermal Power Research Institute
140 schema:name Xi’an Thermal Power Research Institute Co., Ltd., 710054, Xi’an, China
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...