Performance of S-CO2 Brayton Cycle and Organic Rankine Cycle (ORC) Combined System Considering the Diurnal Distribution of Solar Radiation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-21

AUTHORS

Wei Gao, Mingyu Yao, Yong Chen, Hongzhi Li, Yifan Zhang, Lei Zhang

ABSTRACT

This paper researches the performance of a novel supercritical carbon dioxide (S-CO2) Brayton cycle and organic Rankine cycle (ORC) combined system with a theoretical solar radiation diurnal distribution. The new system supplies all solar energy to a S-CO2 Brayton cycle heater, where heat releasing from the S-CO2 cooler is stored in the thermal storage system which is supplied to the ORC. Therefore, solar energy is kept at a high temperature, while at the same time the thermal storage system temperature is low. This paper builds a simple solar radiation diurnal distribution model. The maximum continuous working time, mass of thermal storage material, and parameter variations of the two cycles are simulated with the solar radiation diurnal distribution model. 10 organic fluids and 5 representative thermal storage materials are compared in this paper, with the mass and volume of these materials being shown. The longer the continuous working time is, the lower the system thermal efficiency is. The maximum continuous working time can reach 19.1 hours if the system provides a constant power output. At the same time, the system efficiency can be kept above 38% for most fluids. More... »

PAGES

1-9

Journal

TITLE

Journal of Thermal Science

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11630-019-1114-8

DOI

http://dx.doi.org/10.1007/s11630-019-1114-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112918935


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Mingyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hongzhi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yifan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0038-092x(81)90224-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000400655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2011.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004595250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2014.05.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010633007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2011.07.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019486850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-938x(00)00108-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031333850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2016.09.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033435101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2012.06.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046185596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.supflu.2013.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046422373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2010.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051300405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2012.11.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051689160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2013.12.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051906042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2011.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052400536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.06.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053386075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2011.2163739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4024030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062149348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4025700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062151016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ep.12564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083899591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/gt2012-68932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092838547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/isec2004-65144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092848693"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-21", 
    "datePublishedReg": "2019-03-21", 
    "description": "This paper researches the performance of a novel supercritical carbon dioxide (S-CO2) Brayton cycle and organic Rankine cycle (ORC) combined system with a theoretical solar radiation diurnal distribution. The new system supplies all solar energy to a S-CO2 Brayton cycle heater, where heat releasing from the S-CO2 cooler is stored in the thermal storage system which is supplied to the ORC. Therefore, solar energy is kept at a high temperature, while at the same time the thermal storage system temperature is low. This paper builds a simple solar radiation diurnal distribution model. The maximum continuous working time, mass of thermal storage material, and parameter variations of the two cycles are simulated with the solar radiation diurnal distribution model. 10 organic fluids and 5 representative thermal storage materials are compared in this paper, with the mass and volume of these materials being shown. The longer the continuous working time is, the lower the system thermal efficiency is. The maximum continuous working time can reach 19.1 hours if the system provides a constant power output. At the same time, the system efficiency can be kept above 38% for most fluids.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11630-019-1114-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136366", 
        "issn": [
          "1003-2169", 
          "1993-033X"
        ], 
        "name": "Journal of Thermal Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Performance of S-CO2 Brayton Cycle and Organic Rankine Cycle (ORC) Combined System Considering the Diurnal Distribution of Solar Radiation", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "706eb1aed56b0319a9f7d5546c04b3b63290a6b31e8501e6d23357b2f12dfbcc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11630-019-1114-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112918935"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11630-019-1114-8", 
      "https://app.dimensions.ai/details/publication/pub.1112918935"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72835_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11630-019-1114-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1114-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1114-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1114-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1114-8'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      43 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11630-019-1114-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf367faa57a8240a7b7c1f0e2fcbcbabe
4 schema:citation https://doi.org/10.1002/ep.12564
5 https://doi.org/10.1016/0038-092x(81)90224-3
6 https://doi.org/10.1016/j.applthermaleng.2010.11.008
7 https://doi.org/10.1016/j.applthermaleng.2012.06.041
8 https://doi.org/10.1016/j.applthermaleng.2016.06.152
9 https://doi.org/10.1016/j.energy.2012.11.029
10 https://doi.org/10.1016/j.nucengdes.2013.12.039
11 https://doi.org/10.1016/j.nucengdes.2014.05.032
12 https://doi.org/10.1016/j.rser.2011.07.135
13 https://doi.org/10.1016/j.rser.2016.09.122
14 https://doi.org/10.1016/j.solener.2011.02.010
15 https://doi.org/10.1016/j.solener.2011.12.007
16 https://doi.org/10.1016/j.supflu.2013.01.010
17 https://doi.org/10.1016/s0010-938x(00)00108-6
18 https://doi.org/10.1109/jproc.2011.2163739
19 https://doi.org/10.1115/1.4024030
20 https://doi.org/10.1115/1.4025700
21 https://doi.org/10.1115/gt2012-68932
22 https://doi.org/10.1115/isec2004-65144
23 schema:datePublished 2019-03-21
24 schema:datePublishedReg 2019-03-21
25 schema:description This paper researches the performance of a novel supercritical carbon dioxide (S-CO2) Brayton cycle and organic Rankine cycle (ORC) combined system with a theoretical solar radiation diurnal distribution. The new system supplies all solar energy to a S-CO2 Brayton cycle heater, where heat releasing from the S-CO2 cooler is stored in the thermal storage system which is supplied to the ORC. Therefore, solar energy is kept at a high temperature, while at the same time the thermal storage system temperature is low. This paper builds a simple solar radiation diurnal distribution model. The maximum continuous working time, mass of thermal storage material, and parameter variations of the two cycles are simulated with the solar radiation diurnal distribution model. 10 organic fluids and 5 representative thermal storage materials are compared in this paper, with the mass and volume of these materials being shown. The longer the continuous working time is, the lower the system thermal efficiency is. The maximum continuous working time can reach 19.1 hours if the system provides a constant power output. At the same time, the system efficiency can be kept above 38% for most fluids.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf sg:journal.1136366
30 schema:name Performance of S-CO2 Brayton Cycle and Organic Rankine Cycle (ORC) Combined System Considering the Diurnal Distribution of Solar Radiation
31 schema:pagination 1-9
32 schema:productId N1a172f28b60b407a8ec3aa7f165d8a17
33 Nb16888c1949e4f45b19a98a2949a3b3b
34 Ndafe631350444b38b92e296a3386aba6
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112918935
36 https://doi.org/10.1007/s11630-019-1114-8
37 schema:sdDatePublished 2019-04-11T12:52
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N611e728d000d4bf892e0b416c409e365
40 schema:url https://link.springer.com/10.1007%2Fs11630-019-1114-8
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N05cc7dcc40434551bc66425d42a3d716 schema:affiliation https://www.grid.ac/institutes/grid.495527.8
45 schema:familyName Chen
46 schema:givenName Yong
47 rdf:type schema:Person
48 N1870a36f5fe847e9ac3d0aba096e3b97 schema:affiliation https://www.grid.ac/institutes/grid.495527.8
49 schema:familyName Zhang
50 schema:givenName Lei
51 rdf:type schema:Person
52 N1a172f28b60b407a8ec3aa7f165d8a17 schema:name doi
53 schema:value 10.1007/s11630-019-1114-8
54 rdf:type schema:PropertyValue
55 N4c7d00ee2abd47c4ba117a9517223236 schema:affiliation https://www.grid.ac/institutes/grid.495527.8
56 schema:familyName Yao
57 schema:givenName Mingyu
58 rdf:type schema:Person
59 N611e728d000d4bf892e0b416c409e365 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N6239eb7cdb174bbfb9305fffef4ed766 rdf:first N9a0f5e9910ad40249b0aab3cd0dc4288
62 rdf:rest Nd9865c88daf24a02a988f8479a0cb68c
63 N875103feb60846a7a69e0acf5165b518 rdf:first N05cc7dcc40434551bc66425d42a3d716
64 rdf:rest Nb6ab2d88ec2f426684572e49f2d655fc
65 N9a0f5e9910ad40249b0aab3cd0dc4288 schema:affiliation https://www.grid.ac/institutes/grid.495527.8
66 schema:familyName Zhang
67 schema:givenName Yifan
68 rdf:type schema:Person
69 Nb16888c1949e4f45b19a98a2949a3b3b schema:name dimensions_id
70 schema:value pub.1112918935
71 rdf:type schema:PropertyValue
72 Nb6ab2d88ec2f426684572e49f2d655fc rdf:first Nf77f27c7b05e4411948239d9e822bce6
73 rdf:rest N6239eb7cdb174bbfb9305fffef4ed766
74 Nb6cc9676b235475f96a04f2b6014461c rdf:first N4c7d00ee2abd47c4ba117a9517223236
75 rdf:rest N875103feb60846a7a69e0acf5165b518
76 Ncb096aa6ee7e4d70a3a96a4091624bb9 schema:affiliation https://www.grid.ac/institutes/grid.495527.8
77 schema:familyName Gao
78 schema:givenName Wei
79 rdf:type schema:Person
80 Nd9865c88daf24a02a988f8479a0cb68c rdf:first N1870a36f5fe847e9ac3d0aba096e3b97
81 rdf:rest rdf:nil
82 Ndafe631350444b38b92e296a3386aba6 schema:name readcube_id
83 schema:value 706eb1aed56b0319a9f7d5546c04b3b63290a6b31e8501e6d23357b2f12dfbcc
84 rdf:type schema:PropertyValue
85 Nf367faa57a8240a7b7c1f0e2fcbcbabe rdf:first Ncb096aa6ee7e4d70a3a96a4091624bb9
86 rdf:rest Nb6cc9676b235475f96a04f2b6014461c
87 Nf77f27c7b05e4411948239d9e822bce6 schema:affiliation https://www.grid.ac/institutes/grid.495527.8
88 schema:familyName Li
89 schema:givenName Hongzhi
90 rdf:type schema:Person
91 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
92 schema:name Engineering
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
95 schema:name Materials Engineering
96 rdf:type schema:DefinedTerm
97 sg:journal.1136366 schema:issn 1003-2169
98 1993-033X
99 schema:name Journal of Thermal Science
100 rdf:type schema:Periodical
101 https://doi.org/10.1002/ep.12564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083899591
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0038-092x(81)90224-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000400655
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.applthermaleng.2010.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051300405
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.applthermaleng.2012.06.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046185596
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.applthermaleng.2016.06.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053386075
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.energy.2012.11.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051689160
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.nucengdes.2013.12.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051906042
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.nucengdes.2014.05.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010633007
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.rser.2011.07.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019486850
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.rser.2016.09.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033435101
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.solener.2011.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004595250
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.solener.2011.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052400536
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.supflu.2013.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046422373
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0010-938x(00)00108-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031333850
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/jproc.2011.2163739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297482
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1115/1.4024030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062149348
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1115/1.4025700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062151016
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1115/gt2012-68932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092838547
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1115/isec2004-65144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092848693
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.495527.8 schema:alternateName Thermal Power Research Institute
140 schema:name Xi’an Thermal Power Research Institute Co., Ltd., 710054, Xi’an, China
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...