Droplet Motion and Phase Change Model with Two-Way Coupling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-13

AUTHORS

Fulong Zhao, Qianfeng Liu, Xiao Yan, Hanliang Bo, Chen Zeng, Sichao Tan

ABSTRACT

The droplet interacts intensively with surrounding gas when moving and evaporating in the gas, of which the mutual effects of the gas and the evaporating droplet need to be taken into account. For the typical droplet model, the gas parameters are usually considered as that at infinity and the local parameter variation surrounding the droplet is neglected, consequently leading to some discrepancies. This research tries to develop a new moving droplet phase change model with two-phase coupling which characterizes the local parameter variation of gas phase surrounding the evaporating droplet. Firstly, the interaction mechanism of two phases is presented based on the droplet evaporation phenomena. Then, the droplet motion and phase change model is developed through the theoretical derivation. Subsequently, the analysis of the evaporation characteristics of the injected droplets in the hot air is conducted to simulate the operation process of the containment spray system in the nuclear power station. The numerical simulation indicates the refined droplet model is more capable for precise prediction of the situations with large quantities of evaporating droplets and with intensive interactions between two phases. More... »

PAGES

1-8

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11630-019-1112-x

DOI

http://dx.doi.org/10.1007/s11630-019-1112-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112703406


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Engineering University", 
          "id": "https://www.grid.ac/institutes/grid.33764.35", 
          "name": [
            "College of Nuclear Science and Technology, Harbin Engineering University, 150001, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Fulong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "nstitute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Qianfeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "nstitute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xiao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "nstitute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bo", 
        "givenName": "Hanliang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Engineering University", 
          "id": "https://www.grid.ac/institutes/grid.33764.35", 
          "name": [
            "College of Nuclear Science and Technology, Harbin Engineering University, 150001, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Chen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Engineering University", 
          "id": "https://www.grid.ac/institutes/grid.33764.35", 
          "name": [
            "College of Nuclear Science and Technology, Harbin Engineering University, 150001, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Sichao", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0017-9310(95)00025-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003291116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anucene.2014.08.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007728596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.07.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009772298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010531462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010531462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-1285(99)00012-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018160095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(89)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019416631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(89)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019416631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anucene.2016.09.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020426063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00102208008952385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023336704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2008.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025915260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2012.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031121975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2007.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031328877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pecs.2005.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047641134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2017.01.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083532911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anucene.2017.06.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091740621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anucene.2017.08.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091784389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-018-0983-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100714135", 
          "https://doi.org/10.1007/s11630-018-0983-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-13", 
    "datePublishedReg": "2019-03-13", 
    "description": "The droplet interacts intensively with surrounding gas when moving and evaporating in the gas, of which the mutual effects of the gas and the evaporating droplet need to be taken into account. For the typical droplet model, the gas parameters are usually considered as that at infinity and the local parameter variation surrounding the droplet is neglected, consequently leading to some discrepancies. This research tries to develop a new moving droplet phase change model with two-phase coupling which characterizes the local parameter variation of gas phase surrounding the evaporating droplet. Firstly, the interaction mechanism of two phases is presented based on the droplet evaporation phenomena. Then, the droplet motion and phase change model is developed through the theoretical derivation. Subsequently, the analysis of the evaporation characteristics of the injected droplets in the hot air is conducted to simulate the operation process of the containment spray system in the nuclear power station. The numerical simulation indicates the refined droplet model is more capable for precise prediction of the situations with large quantities of evaporating droplets and with intensive interactions between two phases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11630-019-1112-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136366", 
        "issn": [
          "1003-2169", 
          "1993-033X"
        ], 
        "name": "Journal of Thermal Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Droplet Motion and Phase Change Model with Two-Way Coupling", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6402e28d8849e95431aab124d7fe695b096119e4c623a2a7f266b609fc753210"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11630-019-1112-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112703406"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11630-019-1112-x", 
      "https://app.dimensions.ai/details/publication/pub.1112703406"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127456_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11630-019-1112-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1112-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1112-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1112-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1112-x'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      40 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11630-019-1112-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nacc25e8565f04c72ba55b80e191fbf15
4 schema:citation sg:pub.10.1007/s11630-018-0983-6
5 https://doi.org/10.1016/0017-9310(89)90043-4
6 https://doi.org/10.1016/0017-9310(95)00025-5
7 https://doi.org/10.1016/j.anucene.2014.08.036
8 https://doi.org/10.1016/j.anucene.2016.09.038
9 https://doi.org/10.1016/j.anucene.2017.06.055
10 https://doi.org/10.1016/j.anucene.2017.08.048
11 https://doi.org/10.1016/j.applthermaleng.2008.10.004
12 https://doi.org/10.1016/j.applthermaleng.2016.07.124
13 https://doi.org/10.1016/j.fuel.2017.01.048
14 https://doi.org/10.1016/j.ijheatmasstransfer.2005.03.005
15 https://doi.org/10.1016/j.nucengdes.2007.01.018
16 https://doi.org/10.1016/j.pecs.2005.11.001
17 https://doi.org/10.1016/j.powtec.2012.07.002
18 https://doi.org/10.1016/s0360-1285(99)00012-x
19 https://doi.org/10.1080/00102208008952385
20 schema:datePublished 2019-03-13
21 schema:datePublishedReg 2019-03-13
22 schema:description The droplet interacts intensively with surrounding gas when moving and evaporating in the gas, of which the mutual effects of the gas and the evaporating droplet need to be taken into account. For the typical droplet model, the gas parameters are usually considered as that at infinity and the local parameter variation surrounding the droplet is neglected, consequently leading to some discrepancies. This research tries to develop a new moving droplet phase change model with two-phase coupling which characterizes the local parameter variation of gas phase surrounding the evaporating droplet. Firstly, the interaction mechanism of two phases is presented based on the droplet evaporation phenomena. Then, the droplet motion and phase change model is developed through the theoretical derivation. Subsequently, the analysis of the evaporation characteristics of the injected droplets in the hot air is conducted to simulate the operation process of the containment spray system in the nuclear power station. The numerical simulation indicates the refined droplet model is more capable for precise prediction of the situations with large quantities of evaporating droplets and with intensive interactions between two phases.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf sg:journal.1136366
27 schema:name Droplet Motion and Phase Change Model with Two-Way Coupling
28 schema:pagination 1-8
29 schema:productId N362f18debf464b19b8ce155a4bb499ba
30 N845974ba9aa84f52b1facc08797bba59
31 Nbc5739ab36884a4bbc02a91558378535
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112703406
33 https://doi.org/10.1007/s11630-019-1112-x
34 schema:sdDatePublished 2019-04-11T11:45
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Ne5b0e36db9dc4c3088570580b58253f6
37 schema:url https://link.springer.com/10.1007%2Fs11630-019-1112-x
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N06f6a4ac14c24f368fdf3ae3d808b178 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
42 schema:familyName Yan
43 schema:givenName Xiao
44 rdf:type schema:Person
45 N171e51b2e6794edcbac8038f4283a7ed schema:affiliation https://www.grid.ac/institutes/grid.33764.35
46 schema:familyName Zeng
47 schema:givenName Chen
48 rdf:type schema:Person
49 N1ae4387fcddc424e916ffaac34ca8a33 schema:affiliation https://www.grid.ac/institutes/grid.33764.35
50 schema:familyName Zhao
51 schema:givenName Fulong
52 rdf:type schema:Person
53 N21d53a2f5af1459584231fdf2a4300d1 rdf:first N856a51840ef54ce9839574164d58684a
54 rdf:rest N8cfce8f3049147bdb1e4d2d7d2417ebc
55 N362f18debf464b19b8ce155a4bb499ba schema:name readcube_id
56 schema:value 6402e28d8849e95431aab124d7fe695b096119e4c623a2a7f266b609fc753210
57 rdf:type schema:PropertyValue
58 N6a14db02b2ef4d4aa212161d47f45b7e rdf:first N95d8aae9eae34177a3dd2d14ba56d3da
59 rdf:rest rdf:nil
60 N703b82e0ef4f427a82e05f8e9d5eb97b rdf:first Nec918e1426384648a6766ea660db48d1
61 rdf:rest Nb26b62b79db74ae0ae71780d34f85316
62 N845974ba9aa84f52b1facc08797bba59 schema:name dimensions_id
63 schema:value pub.1112703406
64 rdf:type schema:PropertyValue
65 N856a51840ef54ce9839574164d58684a schema:affiliation https://www.grid.ac/institutes/grid.12527.33
66 schema:familyName Bo
67 schema:givenName Hanliang
68 rdf:type schema:Person
69 N8cfce8f3049147bdb1e4d2d7d2417ebc rdf:first N171e51b2e6794edcbac8038f4283a7ed
70 rdf:rest N6a14db02b2ef4d4aa212161d47f45b7e
71 N95d8aae9eae34177a3dd2d14ba56d3da schema:affiliation https://www.grid.ac/institutes/grid.33764.35
72 schema:familyName Tan
73 schema:givenName Sichao
74 rdf:type schema:Person
75 Nacc25e8565f04c72ba55b80e191fbf15 rdf:first N1ae4387fcddc424e916ffaac34ca8a33
76 rdf:rest N703b82e0ef4f427a82e05f8e9d5eb97b
77 Nb26b62b79db74ae0ae71780d34f85316 rdf:first N06f6a4ac14c24f368fdf3ae3d808b178
78 rdf:rest N21d53a2f5af1459584231fdf2a4300d1
79 Nbc5739ab36884a4bbc02a91558378535 schema:name doi
80 schema:value 10.1007/s11630-019-1112-x
81 rdf:type schema:PropertyValue
82 Ne5b0e36db9dc4c3088570580b58253f6 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nec918e1426384648a6766ea660db48d1 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
85 schema:familyName Liu
86 schema:givenName Qianfeng
87 rdf:type schema:Person
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 sg:journal.1136366 schema:issn 1003-2169
95 1993-033X
96 schema:name Journal of Thermal Science
97 rdf:type schema:Periodical
98 sg:pub.10.1007/s11630-018-0983-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100714135
99 https://doi.org/10.1007/s11630-018-0983-6
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0017-9310(89)90043-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019416631
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0017-9310(95)00025-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003291116
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.anucene.2014.08.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007728596
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.anucene.2016.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020426063
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.anucene.2017.06.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091740621
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.anucene.2017.08.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091784389
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.applthermaleng.2008.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025915260
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.applthermaleng.2016.07.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009772298
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.fuel.2017.01.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083532911
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ijheatmasstransfer.2005.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010531462
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.nucengdes.2007.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031328877
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.pecs.2005.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047641134
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.powtec.2012.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031121975
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0360-1285(99)00012-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018160095
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1080/00102208008952385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023336704
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
132 schema:name nstitute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.33764.35 schema:alternateName Harbin Engineering University
135 schema:name College of Nuclear Science and Technology, Harbin Engineering University, 150001, Harbin, China
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...