Study on Flow Characteristics of a Turbulent Boundary Layer and Vortex Structure of High Pressure Guide Vanes in SCO2 Turbines View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-13

AUTHORS

Wanlong Han, Yueming Wang, Zhenping Feng, Hongzhi Li, Mingyu Yao, Yifan Zhang

ABSTRACT

In order to further understand the aerothermodynamic performance and flow loss mechanism of SCO2 turbines, RANS equations and an SST Turbulence Model were chosen for a numerical study on the secondary flow and vortex structure of cascades using the commercial software CFX. The dimensionless vorticity analysis method was used to study the flow characteristics of the logarithmic layer and viscous sublayer in high pressure guide vane cascades. The new vortex structure and formation mechanism of the vortices were given and analyzed. Simulation results indicated that during the motion of the boundary layer in the cascades, the logarithmic layer and viscous sublayer obtain the different rotational direction vorticity, respectively. The endwall logarithmic layer and pressure side leg of the horseshoe votex gradually develop into the passage vortex, with the endwall viscous sublayer gradually developing into the corner viscous sublayer vortex II and the endwall viscous sublayer vortex I. The endwall viscous sublayer that rolled by the passage vortex is encountered with the upstream-side and radial boundary layer of the vane at the suction separation line, forming the suction separation line vortex beside the passage vortex. A pair of radial transition vortices are formed between the wake and the main stream. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11630-019-1110-z

DOI

http://dx.doi.org/10.1007/s11630-019-1110-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112731985


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "R&D Center, Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China", 
            "School of Energy and Power Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Wanlong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "R&D Center, Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yueming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Energy and Power Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Zhenping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "R&D Center, Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hongzhi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "R&D Center, Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Mingyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermal Power Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.495527.8", 
          "name": [
            "R&D Center, Xi\u2019an Thermal Power Research Institute Co., Ltd., 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yifan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compfluid.2011.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006793218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2015.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015783127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2014.07.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020527421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00350278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038802667", 
          "https://doi.org/10.1007/bf00350278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/8.1925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040739182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7930(00)00026-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042074377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112085001896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054023446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qjmam/8.3.266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059985560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qjmam/8.3.280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059985561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1312799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062067715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1354142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062068442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1518503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062071470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1518504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062071471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2841302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062088646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2841302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062088646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3230246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062108466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3230352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062108572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3250586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062112635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3262089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062115673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3446247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062125591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jppr.2017.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074188667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/95-gt-189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092854047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/93-gt-435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092861041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/95-gt-341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092932996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/92-gt-309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093018823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/hff-05-2018-0194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107557800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/hff-05-2018-0194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107557800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2018.10.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107641401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2018.10.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110271220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4042654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111986586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4042654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111986586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4042654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111986586"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-13", 
    "datePublishedReg": "2019-03-13", 
    "description": "In order to further understand the aerothermodynamic performance and flow loss mechanism of SCO2 turbines, RANS equations and an SST Turbulence Model were chosen for a numerical study on the secondary flow and vortex structure of cascades using the commercial software CFX. The dimensionless vorticity analysis method was used to study the flow characteristics of the logarithmic layer and viscous sublayer in high pressure guide vane cascades. The new vortex structure and formation mechanism of the vortices were given and analyzed. Simulation results indicated that during the motion of the boundary layer in the cascades, the logarithmic layer and viscous sublayer obtain the different rotational direction vorticity, respectively. The endwall logarithmic layer and pressure side leg of the horseshoe votex gradually develop into the passage vortex, with the endwall viscous sublayer gradually developing into the corner viscous sublayer vortex II and the endwall viscous sublayer vortex I. The endwall viscous sublayer that rolled by the passage vortex is encountered with the upstream-side and radial boundary layer of the vane at the suction separation line, forming the suction separation line vortex beside the passage vortex. A pair of radial transition vortices are formed between the wake and the main stream.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11630-019-1110-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136366", 
        "issn": [
          "1003-2169", 
          "1993-033X"
        ], 
        "name": "Journal of Thermal Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Study on Flow Characteristics of a Turbulent Boundary Layer and Vortex Structure of High Pressure Guide Vanes in SCO2 Turbines", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "559bb2791dbb1ac930006aed8ef8ca93f18e14aa55fcda1d3aa577ac494515d0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11630-019-1110-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112731985"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11630-019-1110-z", 
      "https://app.dimensions.ai/details/publication/pub.1112731985"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127422_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11630-019-1110-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1110-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1110-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1110-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1110-z'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      52 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11630-019-1110-z schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nd49b7b6ca5484c9ea0327911e1136df9
4 schema:citation sg:pub.10.1007/bf00350278
5 https://doi.org/10.1016/j.applthermaleng.2018.10.052
6 https://doi.org/10.1016/j.compfluid.2011.09.012
7 https://doi.org/10.1016/j.energy.2014.07.092
8 https://doi.org/10.1016/j.energy.2015.06.024
9 https://doi.org/10.1016/j.ijthermalsci.2018.10.039
10 https://doi.org/10.1016/j.jppr.2017.01.006
11 https://doi.org/10.1016/s0045-7930(00)00026-8
12 https://doi.org/10.1017/s0022112085001896
13 https://doi.org/10.1093/qjmam/8.3.266
14 https://doi.org/10.1093/qjmam/8.3.280
15 https://doi.org/10.1108/hff-05-2018-0194
16 https://doi.org/10.1115/1.1312799
17 https://doi.org/10.1115/1.1354142
18 https://doi.org/10.1115/1.1518503
19 https://doi.org/10.1115/1.1518504
20 https://doi.org/10.1115/1.2841302
21 https://doi.org/10.1115/1.3230246
22 https://doi.org/10.1115/1.3230352
23 https://doi.org/10.1115/1.3250586
24 https://doi.org/10.1115/1.3262089
25 https://doi.org/10.1115/1.3446247
26 https://doi.org/10.1115/1.4042654
27 https://doi.org/10.1115/92-gt-309
28 https://doi.org/10.1115/93-gt-435
29 https://doi.org/10.1115/95-gt-189
30 https://doi.org/10.1115/95-gt-341
31 https://doi.org/10.2514/8.1925
32 schema:datePublished 2019-03-13
33 schema:datePublishedReg 2019-03-13
34 schema:description In order to further understand the aerothermodynamic performance and flow loss mechanism of SCO2 turbines, RANS equations and an SST Turbulence Model were chosen for a numerical study on the secondary flow and vortex structure of cascades using the commercial software CFX. The dimensionless vorticity analysis method was used to study the flow characteristics of the logarithmic layer and viscous sublayer in high pressure guide vane cascades. The new vortex structure and formation mechanism of the vortices were given and analyzed. Simulation results indicated that during the motion of the boundary layer in the cascades, the logarithmic layer and viscous sublayer obtain the different rotational direction vorticity, respectively. The endwall logarithmic layer and pressure side leg of the horseshoe votex gradually develop into the passage vortex, with the endwall viscous sublayer gradually developing into the corner viscous sublayer vortex II and the endwall viscous sublayer vortex I. The endwall viscous sublayer that rolled by the passage vortex is encountered with the upstream-side and radial boundary layer of the vane at the suction separation line, forming the suction separation line vortex beside the passage vortex. A pair of radial transition vortices are formed between the wake and the main stream.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf sg:journal.1136366
39 schema:name Study on Flow Characteristics of a Turbulent Boundary Layer and Vortex Structure of High Pressure Guide Vanes in SCO2 Turbines
40 schema:pagination 1-14
41 schema:productId N7134f1f291af4d88bd7c3b8082ca13c7
42 N8d686f5e1e0e410bb23041e718081f11
43 Na24223b4b26e4438989a1cdf5cae0964
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112731985
45 https://doi.org/10.1007/s11630-019-1110-z
46 schema:sdDatePublished 2019-04-11T11:34
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N1064b722635648c3b1d6fc88cce6f3e7
49 schema:url https://link.springer.com/10.1007%2Fs11630-019-1110-z
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1064b722635648c3b1d6fc88cce6f3e7 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N13bfc151056a486c95faf6de2c307db1 schema:affiliation https://www.grid.ac/institutes/grid.495527.8
56 schema:familyName Zhang
57 schema:givenName Yifan
58 rdf:type schema:Person
59 N25fae7343d2a47c19b9850ac819a413f rdf:first Nb76deab539d2462283de6f52c8a3afe1
60 rdf:rest Ncdd8a1d2e271462aa28f154923554241
61 N56b7945a52154c6885b2201cdebba88e rdf:first N5c645f5e349f41e6bc77a1bdd2c862a8
62 rdf:rest Ncb7beb5fdc154b9ba7b35e8db28b0a46
63 N5c645f5e349f41e6bc77a1bdd2c862a8 schema:affiliation https://www.grid.ac/institutes/grid.495527.8
64 schema:familyName Wang
65 schema:givenName Yueming
66 rdf:type schema:Person
67 N7134f1f291af4d88bd7c3b8082ca13c7 schema:name readcube_id
68 schema:value 559bb2791dbb1ac930006aed8ef8ca93f18e14aa55fcda1d3aa577ac494515d0
69 rdf:type schema:PropertyValue
70 N828a227781244ad7bfef274d373f19cd rdf:first N13bfc151056a486c95faf6de2c307db1
71 rdf:rest rdf:nil
72 N8d686f5e1e0e410bb23041e718081f11 schema:name doi
73 schema:value 10.1007/s11630-019-1110-z
74 rdf:type schema:PropertyValue
75 Na24223b4b26e4438989a1cdf5cae0964 schema:name dimensions_id
76 schema:value pub.1112731985
77 rdf:type schema:PropertyValue
78 Nb1ee3d72f48b4cbd867242e720d32e5b schema:affiliation https://www.grid.ac/institutes/grid.43169.39
79 schema:familyName Han
80 schema:givenName Wanlong
81 rdf:type schema:Person
82 Nb76deab539d2462283de6f52c8a3afe1 schema:affiliation https://www.grid.ac/institutes/grid.495527.8
83 schema:familyName Li
84 schema:givenName Hongzhi
85 rdf:type schema:Person
86 Ncb7beb5fdc154b9ba7b35e8db28b0a46 rdf:first Nd8a2842c0a364227917b4d191d244b16
87 rdf:rest N25fae7343d2a47c19b9850ac819a413f
88 Ncdd8a1d2e271462aa28f154923554241 rdf:first Nfe760b35a72b4b8191f59faf234a410d
89 rdf:rest N828a227781244ad7bfef274d373f19cd
90 Nd49b7b6ca5484c9ea0327911e1136df9 rdf:first Nb1ee3d72f48b4cbd867242e720d32e5b
91 rdf:rest N56b7945a52154c6885b2201cdebba88e
92 Nd8a2842c0a364227917b4d191d244b16 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
93 schema:familyName Feng
94 schema:givenName Zhenping
95 rdf:type schema:Person
96 Nfe760b35a72b4b8191f59faf234a410d schema:affiliation https://www.grid.ac/institutes/grid.495527.8
97 schema:familyName Yao
98 schema:givenName Mingyu
99 rdf:type schema:Person
100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
101 schema:name Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
104 schema:name Interdisciplinary Engineering
105 rdf:type schema:DefinedTerm
106 sg:journal.1136366 schema:issn 1003-2169
107 1993-033X
108 schema:name Journal of Thermal Science
109 rdf:type schema:Periodical
110 sg:pub.10.1007/bf00350278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038802667
111 https://doi.org/10.1007/bf00350278
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.applthermaleng.2018.10.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107641401
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.compfluid.2011.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006793218
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.energy.2014.07.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020527421
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.energy.2015.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015783127
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ijthermalsci.2018.10.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110271220
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jppr.2017.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074188667
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0045-7930(00)00026-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042074377
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1017/s0022112085001896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054023446
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1093/qjmam/8.3.266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059985560
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1093/qjmam/8.3.280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059985561
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1108/hff-05-2018-0194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107557800
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1115/1.1312799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062067715
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1115/1.1354142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062068442
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1115/1.1518503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062071470
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1115/1.1518504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062071471
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1115/1.2841302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062088646
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1115/1.3230246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062108466
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1115/1.3230352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062108572
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1115/1.3250586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062112635
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1115/1.3262089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062115673
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1115/1.3446247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062125591
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1115/1.4042654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111986586
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1115/92-gt-309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093018823
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1115/93-gt-435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092861041
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1115/95-gt-189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092854047
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1115/95-gt-341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092932996
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2514/8.1925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040739182
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
168 schema:name R&D Center, Xi’an Thermal Power Research Institute Co., Ltd., 710054, Xi’an, China
169 School of Energy and Power Engineering, Xi’an Jiaotong University, 710049, Xi’an, China
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.495527.8 schema:alternateName Thermal Power Research Institute
172 schema:name R&D Center, Xi’an Thermal Power Research Institute Co., Ltd., 710054, Xi’an, China
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...