Design and Analysis of a Single-Stage Transonic Centrifugal Turbine for organic Rankine cycle (ORC) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-26

AUTHORS

Naian Wang, Xiaojin Sun, Diangui Huang

ABSTRACT

The recovery of low temperature heat sources is a hot topic in the world. The ORC system can effectively use the low temperature heat source. As its main output device, the performance of the turbine is very important. The single stage transonic turbine has the characteristics of small size and large output power. In this paper, the complete design process of a transonic centrifugal turbine with R245fa in low working temperature condition is introduced. At the design conditions, the shaft power and the wheel efficiency of the centrifugal turbine can reach 1.12 MW and 83.61%, respectively. In addition, a thermodynamic ORC cycle is presented and the off-design conditions of the turbine and its influence on the system are studied in detail. The results obtained in the present work show that the single-stage transonic centrifugal turbine can be regarded as a potential choice to be applied in small scale ORC systems. More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11630-019-1079-7

DOI

http://dx.doi.org/10.1007/s11630-019-1079-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113005026


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Shanghai for Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.267139.8", 
          "name": [
            "School of Energy and Power Engineering, University of Shanghai for Science and technology, 200093, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Naian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Shanghai for Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.267139.8", 
          "name": [
            "School of Energy and Power Engineering, University of Shanghai for Science and technology, 200093, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Xiaojin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Shanghai for Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.267139.8", 
          "name": [
            "School of Energy and Power Engineering, University of Shanghai for Science and technology, 200093, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Diangui", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2010.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000134547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2014.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001790495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2012.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002323708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.08.168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016830937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017043789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2012.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018028778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.egypro.2015.07.688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018467650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0957650911413840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021141002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0957650911413840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021141002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2009.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023924636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2011.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030799233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2012.12.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032719621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2008.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034558414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2013.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040325650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2008.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040861482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2014.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042660823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4023122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062148444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09576509jpe372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064455955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09576509jpe372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064455955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.08.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091107269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2017.08.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091217247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.12.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099646025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.12.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099646025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-018-1023-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105149461", 
          "https://doi.org/10.1007/s11630-018-1023-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-018-1023-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105149461", 
          "https://doi.org/10.1007/s11630-018-1023-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-018-1049-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106430597", 
          "https://doi.org/10.1007/s11630-018-1049-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-26", 
    "datePublishedReg": "2019-03-26", 
    "description": "The recovery of low temperature heat sources is a hot topic in the world. The ORC system can effectively use the low temperature heat source. As its main output device, the performance of the turbine is very important. The single stage transonic turbine has the characteristics of small size and large output power. In this paper, the complete design process of a transonic centrifugal turbine with R245fa in low working temperature condition is introduced. At the design conditions, the shaft power and the wheel efficiency of the centrifugal turbine can reach 1.12 MW and 83.61%, respectively. In addition, a thermodynamic ORC cycle is presented and the off-design conditions of the turbine and its influence on the system are studied in detail. The results obtained in the present work show that the single-stage transonic centrifugal turbine can be regarded as a potential choice to be applied in small scale ORC systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11630-019-1079-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136366", 
        "issn": [
          "1003-2169", 
          "1993-033X"
        ], 
        "name": "Journal of Thermal Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Design and Analysis of a Single-Stage Transonic Centrifugal Turbine for organic Rankine cycle (ORC)", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "316bf6a48e78dc228bbd4fdac4ae9fc78574141d5703d1fccda579875c4d0103"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11630-019-1079-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113005026"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11630-019-1079-7", 
      "https://app.dimensions.ai/details/publication/pub.1113005026"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88227_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11630-019-1079-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1079-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1079-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1079-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1079-7'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      46 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11630-019-1079-7 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N0cd666d85b634dabb36b825254637d3b
4 schema:citation sg:pub.10.1007/s11630-018-1023-2
5 sg:pub.10.1007/s11630-018-1049-5
6 https://doi.org/10.1016/j.apenergy.2012.07.012
7 https://doi.org/10.1016/j.applthermaleng.2008.12.004
8 https://doi.org/10.1016/j.applthermaleng.2009.04.013
9 https://doi.org/10.1016/j.applthermaleng.2010.02.012
10 https://doi.org/10.1016/j.applthermaleng.2015.12.009
11 https://doi.org/10.1016/j.applthermaleng.2016.08.168
12 https://doi.org/10.1016/j.applthermaleng.2017.08.039
13 https://doi.org/10.1016/j.applthermaleng.2017.12.044
14 https://doi.org/10.1016/j.compfluid.2014.11.001
15 https://doi.org/10.1016/j.desal.2008.04.016
16 https://doi.org/10.1016/j.egypro.2015.07.688
17 https://doi.org/10.1016/j.enconman.2012.10.003
18 https://doi.org/10.1016/j.energy.2012.12.052
19 https://doi.org/10.1016/j.energy.2017.08.061
20 https://doi.org/10.1016/j.icheatmasstransfer.2013.04.014
21 https://doi.org/10.1016/j.renene.2014.03.010
22 https://doi.org/10.1016/j.rser.2011.05.012
23 https://doi.org/10.1115/1.4023122
24 https://doi.org/10.1177/0957650911413840
25 https://doi.org/10.1243/09576509jpe372
26 schema:datePublished 2019-03-26
27 schema:datePublishedReg 2019-03-26
28 schema:description The recovery of low temperature heat sources is a hot topic in the world. The ORC system can effectively use the low temperature heat source. As its main output device, the performance of the turbine is very important. The single stage transonic turbine has the characteristics of small size and large output power. In this paper, the complete design process of a transonic centrifugal turbine with R245fa in low working temperature condition is introduced. At the design conditions, the shaft power and the wheel efficiency of the centrifugal turbine can reach 1.12 MW and 83.61%, respectively. In addition, a thermodynamic ORC cycle is presented and the off-design conditions of the turbine and its influence on the system are studied in detail. The results obtained in the present work show that the single-stage transonic centrifugal turbine can be regarded as a potential choice to be applied in small scale ORC systems.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf sg:journal.1136366
33 schema:name Design and Analysis of a Single-Stage Transonic Centrifugal Turbine for organic Rankine cycle (ORC)
34 schema:pagination 1-11
35 schema:productId N5d9049df3c4644d188a9a2c439264cc5
36 N8a30a5380a45478195e1ae0e3a138d63
37 Nc2926721ba06473cbd3f55d16733b6d7
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113005026
39 https://doi.org/10.1007/s11630-019-1079-7
40 schema:sdDatePublished 2019-04-11T13:08
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N91925d1ca29e48dfa831e419482b52ec
43 schema:url https://link.springer.com/10.1007%2Fs11630-019-1079-7
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0cd666d85b634dabb36b825254637d3b rdf:first N588949c61c9f4f988f08c3f8b61c9ee5
48 rdf:rest N2eba0f0cb6064d2c90cb8008de9f4a6a
49 N21728fe611c542acaf33758210123dfa rdf:first Nd95cffa78157425cba1d537325538914
50 rdf:rest rdf:nil
51 N2eba0f0cb6064d2c90cb8008de9f4a6a rdf:first N8e448841f96a4bb9912794711bcba371
52 rdf:rest N21728fe611c542acaf33758210123dfa
53 N588949c61c9f4f988f08c3f8b61c9ee5 schema:affiliation https://www.grid.ac/institutes/grid.267139.8
54 schema:familyName Wang
55 schema:givenName Naian
56 rdf:type schema:Person
57 N5d9049df3c4644d188a9a2c439264cc5 schema:name readcube_id
58 schema:value 316bf6a48e78dc228bbd4fdac4ae9fc78574141d5703d1fccda579875c4d0103
59 rdf:type schema:PropertyValue
60 N8a30a5380a45478195e1ae0e3a138d63 schema:name doi
61 schema:value 10.1007/s11630-019-1079-7
62 rdf:type schema:PropertyValue
63 N8e448841f96a4bb9912794711bcba371 schema:affiliation https://www.grid.ac/institutes/grid.267139.8
64 schema:familyName Sun
65 schema:givenName Xiaojin
66 rdf:type schema:Person
67 N91925d1ca29e48dfa831e419482b52ec schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nc2926721ba06473cbd3f55d16733b6d7 schema:name dimensions_id
70 schema:value pub.1113005026
71 rdf:type schema:PropertyValue
72 Nd95cffa78157425cba1d537325538914 schema:affiliation https://www.grid.ac/institutes/grid.267139.8
73 schema:familyName Huang
74 schema:givenName Diangui
75 rdf:type schema:Person
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
80 schema:name Interdisciplinary Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1136366 schema:issn 1003-2169
83 1993-033X
84 schema:name Journal of Thermal Science
85 rdf:type schema:Periodical
86 sg:pub.10.1007/s11630-018-1023-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105149461
87 https://doi.org/10.1007/s11630-018-1023-2
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s11630-018-1049-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106430597
90 https://doi.org/10.1007/s11630-018-1049-5
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.apenergy.2012.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002323708
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.applthermaleng.2008.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040861482
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.applthermaleng.2009.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023924636
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.applthermaleng.2010.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000134547
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.applthermaleng.2015.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017043789
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.applthermaleng.2016.08.168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016830937
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.applthermaleng.2017.08.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091107269
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.applthermaleng.2017.12.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099646025
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.compfluid.2014.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001790495
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.desal.2008.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034558414
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.egypro.2015.07.688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018467650
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.enconman.2012.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018028778
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.energy.2012.12.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032719621
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.energy.2017.08.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091217247
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.icheatmasstransfer.2013.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040325650
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.renene.2014.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042660823
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.rser.2011.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030799233
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1115/1.4023122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062148444
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1177/0957650911413840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021141002
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1243/09576509jpe372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064455955
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.267139.8 schema:alternateName University of Shanghai for Science and Technology
133 schema:name School of Energy and Power Engineering, University of Shanghai for Science and technology, 200093, Shanghai, China
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...