Sub-Atmospheric Pressure Coupled with Width Effect on Downward Flame Spread over Energy Conservation Material Polyurethane Foam View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-27

AUTHORS

Xin Ma, Ran Tu, Xudong Cheng, Shuguang Zhu, Qiang Sun, Tingyong Fang

ABSTRACT

Rigid polyurethane (PUR) foam, a sustainable thermosetting building facade porous polymer material, has been widely applied in the construction industry for energy conservation. Additional knowledge of the fire safety performance of PUR foam at different altitudes and sample widths is required. Comparative lab-scale experiments were conducted in the Lhasa plateau (66.5 kPa) and the Hefei plain (99.8 kPa) in China. Flame propagation characteristics (average flame spread rate and flame height) were measured at different widths and atmospheric pressures of the test locations. Experimental results show that the dependence of dimensionless flame heights on sample width shows negative power law relationships with index of -w / 5.4 - -w / 5.8. Both flame height and flame spread rate were lower under low ambient pressure conditions as Hf ∝ P0.26~0.33 and Vf ∝ P0.057~0.568 Flame spread rate decreased with increasing sample width in the convection regime before a critical width of 4 cm–8 cm, after which the flame spread rate increased in the radiation regime. Results of this study contribute to the science of combustion, fire safety and energy conservation, and provide a basis for fire safety protocols for historical heritage buildings in the Lhasa plateau. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11630-019-1077-9

DOI

http://dx.doi.org/10.1007/s11630-019-1077-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112438761


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Anhui Jianzhu University", 
          "id": "https://www.grid.ac/institutes/grid.440647.5", 
          "name": [
            "College of Environment and Energy Engineering, Anhui Jianzhu University, 230022, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Xin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Huaqiao University", 
          "id": "https://www.grid.ac/institutes/grid.411404.4", 
          "name": [
            "College of Mechanical Engineering and Automation, Huaqiao University, 361021, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tu", 
        "givenName": "Ran", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "State Key Laboratory of Fire Science, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Xudong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Jianzhu University", 
          "id": "https://www.grid.ac/institutes/grid.440647.5", 
          "name": [
            "College of Environment and Energy Engineering, Anhui Jianzhu University, 230022, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Shuguang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Jianzhu University", 
          "id": "https://www.grid.ac/institutes/grid.440647.5", 
          "name": [
            "College of Environment and Energy Engineering, Anhui Jianzhu University, 230022, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Qiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Jianzhu University", 
          "id": "https://www.grid.ac/institutes/grid.440647.5", 
          "name": [
            "College of Environment and Energy Engineering, Anhui Jianzhu University, 230022, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Tingyong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.scs.2013.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009782541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.combustflame.2008.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017837691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036855073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2016.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037245940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0379-7112(81)90037-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037266794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0379-7112(81)90037-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037266794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.10.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041651870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042582184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2007.10.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043613232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-015-4898-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048269055", 
          "https://doi.org/10.1007/s10973-015-4898-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-009-0272-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049556118", 
          "https://doi.org/10.1007/s11434-009-0272-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2014.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050088469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050555329", 
          "https://doi.org/10.1007/bf02653199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050555329", 
          "https://doi.org/10.1007/bf02653199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0892705715569826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063869984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0892705715569826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063869984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19942060.2017.1281845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083779019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2017.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091198680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2017.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099649685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conbuildmat.2018.02.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101199971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2018.08.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106892455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1420326x18798003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106998837"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-27", 
    "datePublishedReg": "2019-02-27", 
    "description": "Rigid polyurethane (PUR) foam, a sustainable thermosetting building facade porous polymer material, has been widely applied in the construction industry for energy conservation. Additional knowledge of the fire safety performance of PUR foam at different altitudes and sample widths is required. Comparative lab-scale experiments were conducted in the Lhasa plateau (66.5 kPa) and the Hefei plain (99.8 kPa) in China. Flame propagation characteristics (average flame spread rate and flame height) were measured at different widths and atmospheric pressures of the test locations. Experimental results show that the dependence of dimensionless flame heights on sample width shows negative power law relationships with index of -w / 5.4 - -w / 5.8. Both flame height and flame spread rate were lower under low ambient pressure conditions as Hf \u221d P0.26~0.33 and Vf \u221d P0.057~0.568 Flame spread rate decreased with increasing sample width in the convection regime before a critical width of 4 cm\u20138 cm, after which the flame spread rate increased in the radiation regime. Results of this study contribute to the science of combustion, fire safety and energy conservation, and provide a basis for fire safety protocols for historical heritage buildings in the Lhasa plateau.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11630-019-1077-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136366", 
        "issn": [
          "1003-2169", 
          "1993-033X"
        ], 
        "name": "Journal of Thermal Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Sub-Atmospheric Pressure Coupled with Width Effect on Downward Flame Spread over Energy Conservation Material Polyurethane Foam", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ddbe5dee27983e6f47760135e6f6d62f322d7f372782fa19379cd500961eb28"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11630-019-1077-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112438761"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11630-019-1077-9", 
      "https://app.dimensions.ai/details/publication/pub.1112438761"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54336_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11630-019-1077-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1077-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1077-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1077-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-019-1077-9'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      43 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11630-019-1077-9 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N9dfdd3a4266348c08bc331fd4f385fe9
4 schema:citation sg:pub.10.1007/bf02653199
5 sg:pub.10.1007/s10973-015-4898-0
6 sg:pub.10.1007/s11434-009-0272-6
7 https://doi.org/10.1016/0379-7112(81)90037-0
8 https://doi.org/10.1016/j.applthermaleng.2015.10.108
9 https://doi.org/10.1016/j.combustflame.2008.05.023
10 https://doi.org/10.1016/j.conbuildmat.2018.02.027
11 https://doi.org/10.1016/j.enconman.2014.08.026
12 https://doi.org/10.1016/j.engstruct.2018.08.106
13 https://doi.org/10.1016/j.expthermflusci.2017.12.009
14 https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.066
15 https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.091
16 https://doi.org/10.1016/j.ijthermalsci.2016.12.003
17 https://doi.org/10.1016/j.jhazmat.2007.10.058
18 https://doi.org/10.1016/j.jhazmat.2017.08.022
19 https://doi.org/10.1016/j.scs.2013.08.003
20 https://doi.org/10.1080/19942060.2017.1281845
21 https://doi.org/10.1177/0892705715569826
22 https://doi.org/10.1177/1420326x18798003
23 schema:datePublished 2019-02-27
24 schema:datePublishedReg 2019-02-27
25 schema:description Rigid polyurethane (PUR) foam, a sustainable thermosetting building facade porous polymer material, has been widely applied in the construction industry for energy conservation. Additional knowledge of the fire safety performance of PUR foam at different altitudes and sample widths is required. Comparative lab-scale experiments were conducted in the Lhasa plateau (66.5 kPa) and the Hefei plain (99.8 kPa) in China. Flame propagation characteristics (average flame spread rate and flame height) were measured at different widths and atmospheric pressures of the test locations. Experimental results show that the dependence of dimensionless flame heights on sample width shows negative power law relationships with index of -w / 5.4 - -w / 5.8. Both flame height and flame spread rate were lower under low ambient pressure conditions as Hf ∝ P0.26~0.33 and Vf ∝ P0.057~0.568 Flame spread rate decreased with increasing sample width in the convection regime before a critical width of 4 cm–8 cm, after which the flame spread rate increased in the radiation regime. Results of this study contribute to the science of combustion, fire safety and energy conservation, and provide a basis for fire safety protocols for historical heritage buildings in the Lhasa plateau.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf sg:journal.1136366
30 schema:name Sub-Atmospheric Pressure Coupled with Width Effect on Downward Flame Spread over Energy Conservation Material Polyurethane Foam
31 schema:pagination 1-7
32 schema:productId N564daddb38cc48f7876747e413492fa5
33 Nea189578bfd84a7099b1162aba32cbcb
34 Neea53094fcca4268bd35c9d9442c01e1
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112438761
36 https://doi.org/10.1007/s11630-019-1077-9
37 schema:sdDatePublished 2019-04-11T10:21
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nadf62b5ce57b416080a4c2a64b1c7f1e
40 schema:url https://link.springer.com/10.1007%2Fs11630-019-1077-9
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N00b0490b41934f8588e23c720d42eeac schema:affiliation https://www.grid.ac/institutes/grid.440647.5
45 schema:familyName Ma
46 schema:givenName Xin
47 rdf:type schema:Person
48 N497b616555534469a85a6952d129aacc rdf:first Nf6e8744d2d7346078ac653985dd98084
49 rdf:rest Nc1f88505793f44b987781c93fb6d06be
50 N564daddb38cc48f7876747e413492fa5 schema:name dimensions_id
51 schema:value pub.1112438761
52 rdf:type schema:PropertyValue
53 N6cfa86c1a7bb4fa6a5ddf051f2a2920d schema:affiliation https://www.grid.ac/institutes/grid.440647.5
54 schema:familyName Zhu
55 schema:givenName Shuguang
56 rdf:type schema:Person
57 N83cd78afe0844671949cefb5aa6ac98a rdf:first Nbc435a72e89e4a0cbafbeb197d1a514a
58 rdf:rest Nbaeb874fe4854fe3b494a63d2c935301
59 N9dfdd3a4266348c08bc331fd4f385fe9 rdf:first N00b0490b41934f8588e23c720d42eeac
60 rdf:rest N83cd78afe0844671949cefb5aa6ac98a
61 Na76f110b440e41ca9a0d6ea0cbf29a73 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
62 schema:familyName Cheng
63 schema:givenName Xudong
64 rdf:type schema:Person
65 Nadf62b5ce57b416080a4c2a64b1c7f1e schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nbaeb874fe4854fe3b494a63d2c935301 rdf:first Na76f110b440e41ca9a0d6ea0cbf29a73
68 rdf:rest Nf105df4286d249cc88cbb5572a56adcc
69 Nbc435a72e89e4a0cbafbeb197d1a514a schema:affiliation https://www.grid.ac/institutes/grid.411404.4
70 schema:familyName Tu
71 schema:givenName Ran
72 rdf:type schema:Person
73 Nc1f88505793f44b987781c93fb6d06be rdf:first Nfa9bde06ea6f40578807d06b207b1bcf
74 rdf:rest rdf:nil
75 Nea189578bfd84a7099b1162aba32cbcb schema:name readcube_id
76 schema:value 9ddbe5dee27983e6f47760135e6f6d62f322d7f372782fa19379cd500961eb28
77 rdf:type schema:PropertyValue
78 Neea53094fcca4268bd35c9d9442c01e1 schema:name doi
79 schema:value 10.1007/s11630-019-1077-9
80 rdf:type schema:PropertyValue
81 Nf105df4286d249cc88cbb5572a56adcc rdf:first N6cfa86c1a7bb4fa6a5ddf051f2a2920d
82 rdf:rest N497b616555534469a85a6952d129aacc
83 Nf6e8744d2d7346078ac653985dd98084 schema:affiliation https://www.grid.ac/institutes/grid.440647.5
84 schema:familyName Sun
85 schema:givenName Qiang
86 rdf:type schema:Person
87 Nfa9bde06ea6f40578807d06b207b1bcf schema:affiliation https://www.grid.ac/institutes/grid.440647.5
88 schema:familyName Fang
89 schema:givenName Tingyong
90 rdf:type schema:Person
91 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
92 schema:name Engineering
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
95 schema:name Interdisciplinary Engineering
96 rdf:type schema:DefinedTerm
97 sg:journal.1136366 schema:issn 1003-2169
98 1993-033X
99 schema:name Journal of Thermal Science
100 rdf:type schema:Periodical
101 sg:pub.10.1007/bf02653199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050555329
102 https://doi.org/10.1007/bf02653199
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s10973-015-4898-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048269055
105 https://doi.org/10.1007/s10973-015-4898-0
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11434-009-0272-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049556118
108 https://doi.org/10.1007/s11434-009-0272-6
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0379-7112(81)90037-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037266794
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.applthermaleng.2015.10.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041651870
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.combustflame.2008.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017837691
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.conbuildmat.2018.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101199971
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.enconman.2014.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050088469
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.engstruct.2018.08.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106892455
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.expthermflusci.2017.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099649685
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036855073
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042582184
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ijthermalsci.2016.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037245940
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jhazmat.2007.10.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043613232
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jhazmat.2017.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091198680
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.scs.2013.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009782541
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/19942060.2017.1281845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083779019
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1177/0892705715569826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063869984
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1177/1420326x18798003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106998837
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.411404.4 schema:alternateName Huaqiao University
143 schema:name College of Mechanical Engineering and Automation, Huaqiao University, 361021, Xiamen, China
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.440647.5 schema:alternateName Anhui Jianzhu University
146 schema:name College of Environment and Energy Engineering, Anhui Jianzhu University, 230022, Hefei, China
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
149 schema:name State Key Laboratory of Fire Science, University of Science and Technology of China, 230026, Hefei, China
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...