Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04

AUTHORS

Yongwei Wang, Xiulan Huai

ABSTRACT

The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer. More... »

PAGES

175-183

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11630-018-0998-z

DOI

http://dx.doi.org/10.1007/s11630-018-0998-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101550191


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Engineering Thermophysics", 
          "id": "https://www.grid.ac/institutes/grid.458465.e", 
          "name": [
            "Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yongwei", 
        "id": "sg:person.014226727206.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014226727206.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Engineering Thermophysics", 
          "id": "https://www.grid.ac/institutes/grid.458465.e", 
          "name": [
            "Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huai", 
        "givenName": "Xiulan", 
        "id": "sg:person.016162744126.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016162744126.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2010.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007086464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2014.07.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010697379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2006.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014830514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e5050482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015121759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.04.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024770041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2010.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025490241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2012.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026728252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027092322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2016.12.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027393736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2010.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028559544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2004.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043325134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2007.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049480779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2012.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050852255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1777585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062074411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2098827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2098827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2130407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2130407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3451063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062128740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4001755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062142106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnucene.2017.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085155678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470172605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470172605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661438"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04", 
    "datePublishedReg": "2018-04-01", 
    "description": "The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11630-018-0998-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136366", 
        "issn": [
          "1003-2169", 
          "1993-033X"
        ], 
        "name": "Journal of Thermal Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS", 
    "pagination": "175-183", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2511ca158c58013a8d1ac63cac8b5299553376827899ce31b0d84587f782f9cf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11630-018-0998-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101550191"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11630-018-0998-z", 
      "https://app.dimensions.ai/details/publication/pub.1101550191"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29182_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11630-018-0998-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-018-0998-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-018-0998-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-018-0998-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-018-0998-z'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11630-018-0998-z schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nd1e906d87c164e41b7e4aab43a5dc1a7
4 schema:citation https://doi.org/10.1002/9780470172605
5 https://doi.org/10.1016/j.applthermaleng.2007.08.010
6 https://doi.org/10.1016/j.applthermaleng.2015.04.069
7 https://doi.org/10.1016/j.applthermaleng.2015.11.005
8 https://doi.org/10.1016/j.enconman.2004.10.020
9 https://doi.org/10.1016/j.enconman.2016.12.059
10 https://doi.org/10.1016/j.energy.2006.06.002
11 https://doi.org/10.1016/j.energy.2010.01.007
12 https://doi.org/10.1016/j.energy.2010.05.014
13 https://doi.org/10.1016/j.icheatmasstransfer.2010.11.016
14 https://doi.org/10.1016/j.icheatmasstransfer.2012.04.003
15 https://doi.org/10.1016/j.icheatmasstransfer.2012.06.009
16 https://doi.org/10.1016/j.pnucene.2017.04.013
17 https://doi.org/10.1016/j.rser.2014.07.186
18 https://doi.org/10.1115/1.1777585
19 https://doi.org/10.1115/1.2098827
20 https://doi.org/10.1115/1.2130407
21 https://doi.org/10.1115/1.3451063
22 https://doi.org/10.1115/1.4001755
23 https://doi.org/10.3390/e5050482
24 schema:datePublished 2018-04
25 schema:datePublishedReg 2018-04-01
26 schema:description The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N05bb2fab66914cd88186edfee7fbba5e
31 Na703c073c93243f6addde3a71ca876bf
32 sg:journal.1136366
33 schema:name Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS
34 schema:pagination 175-183
35 schema:productId N1aabe23566d94841bd1dcab078405e19
36 N64a5f0353cf04cc6b83e290f0d9e9642
37 Nc687426bfea847ecbcc843aa1493d7f9
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101550191
39 https://doi.org/10.1007/s11630-018-0998-z
40 schema:sdDatePublished 2019-04-11T11:51
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nbb290036c7cb4dccba3c56ddd52dcffc
43 schema:url https://link.springer.com/10.1007%2Fs11630-018-0998-z
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N05bb2fab66914cd88186edfee7fbba5e schema:volumeNumber 27
48 rdf:type schema:PublicationVolume
49 N1aabe23566d94841bd1dcab078405e19 schema:name readcube_id
50 schema:value 2511ca158c58013a8d1ac63cac8b5299553376827899ce31b0d84587f782f9cf
51 rdf:type schema:PropertyValue
52 N64a5f0353cf04cc6b83e290f0d9e9642 schema:name doi
53 schema:value 10.1007/s11630-018-0998-z
54 rdf:type schema:PropertyValue
55 Na703c073c93243f6addde3a71ca876bf schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 Nbb290036c7cb4dccba3c56ddd52dcffc schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nc687426bfea847ecbcc843aa1493d7f9 schema:name dimensions_id
60 schema:value pub.1101550191
61 rdf:type schema:PropertyValue
62 Nd1e906d87c164e41b7e4aab43a5dc1a7 rdf:first sg:person.014226727206.46
63 rdf:rest Ndc59744198104a0eb642cfd8cb527eae
64 Ndc59744198104a0eb642cfd8cb527eae rdf:first sg:person.016162744126.43
65 rdf:rest rdf:nil
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
70 schema:name Interdisciplinary Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1136366 schema:issn 1003-2169
73 1993-033X
74 schema:name Journal of Thermal Science
75 rdf:type schema:Periodical
76 sg:person.014226727206.46 schema:affiliation https://www.grid.ac/institutes/grid.458465.e
77 schema:familyName Wang
78 schema:givenName Yongwei
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014226727206.46
80 rdf:type schema:Person
81 sg:person.016162744126.43 schema:affiliation https://www.grid.ac/institutes/grid.458465.e
82 schema:familyName Huai
83 schema:givenName Xiulan
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016162744126.43
85 rdf:type schema:Person
86 https://doi.org/10.1002/9780470172605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661438
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.applthermaleng.2007.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049480779
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.applthermaleng.2015.04.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024770041
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.applthermaleng.2015.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027092322
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.enconman.2004.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043325134
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.enconman.2016.12.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027393736
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.energy.2006.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014830514
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.energy.2010.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028559544
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.energy.2010.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025490241
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.icheatmasstransfer.2010.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007086464
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.icheatmasstransfer.2012.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026728252
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.icheatmasstransfer.2012.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050852255
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.pnucene.2017.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085155678
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.rser.2014.07.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010697379
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1115/1.1777585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062074411
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1115/1.2098827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062076925
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1115/1.2130407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062077119
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1115/1.3451063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062128740
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1115/1.4001755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062142106
123 rdf:type schema:CreativeWork
124 https://doi.org/10.3390/e5050482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015121759
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.458465.e schema:alternateName Institute of Engineering Thermophysics
127 schema:name Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...