Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02

AUTHORS

Miao Wang, Jin Wang, Jiajin Wang, Cheng Shi

ABSTRACT

A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout. More... »

PAGES

39-47

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11630-018-0982-7

DOI

http://dx.doi.org/10.1007/s11630-018-0982-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100712602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "Department of Municipal & Environmental Engineering, Beijing Jiaotong University, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Miao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "Department of Municipal & Environmental Engineering, Beijing Jiaotong University, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Environmental Stewardship, Company of Lark World, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jiajin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Energy Industry, China International Engineering Consulting Corporation, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Cheng", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0360-1323(00)00098-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002417115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013396745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013396745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013396745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013396745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2014.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014074554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2006.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014660143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.09.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018217106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023092614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2007.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023465617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2007.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028225135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-4311(03)00201-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032463583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-4311(03)00201-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032463583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035096879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.08.190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045810316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2822554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062085130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3245655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062111754"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02", 
    "datePublishedReg": "2018-02-01", 
    "description": "A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11630-018-0982-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136366", 
        "issn": [
          "1003-2169", 
          "1993-033X"
        ], 
        "name": "Journal of Thermal Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower", 
    "pagination": "39-47", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "54fe30a53d0c3fcbcc701b28eb7f4d1bef93e6992e57060592321b76abf197b0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11630-018-0982-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100712602"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11630-018-0982-7", 
      "https://app.dimensions.ai/details/publication/pub.1100712602"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11630-018-0982-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-018-0982-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-018-0982-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-018-0982-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-018-0982-7'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11630-018-0982-7 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N28aa7342098441d980489360126781ef
4 schema:citation https://doi.org/10.1016/j.applthermaleng.2007.03.036
5 https://doi.org/10.1016/j.applthermaleng.2015.05.065
6 https://doi.org/10.1016/j.applthermaleng.2015.09.054
7 https://doi.org/10.1016/j.applthermaleng.2016.08.190
8 https://doi.org/10.1016/j.enconman.2006.04.002
9 https://doi.org/10.1016/j.enconman.2007.04.018
10 https://doi.org/10.1016/j.enconman.2014.10.031
11 https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.004
12 https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.008
13 https://doi.org/10.1016/s0360-1323(00)00098-6
14 https://doi.org/10.1016/s1359-4311(03)00201-1
15 https://doi.org/10.1115/1.2822554
16 https://doi.org/10.1115/1.3245655
17 schema:datePublished 2018-02
18 schema:datePublishedReg 2018-02-01
19 schema:description A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N71f05ce2338e4d3ca74a8650031541d3
24 Ne4ce1e79af4b4b7494e46c82dbfc4090
25 sg:journal.1136366
26 schema:name Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower
27 schema:pagination 39-47
28 schema:productId N536599f29759442f888c1761051ac250
29 Nb37497172b5248d0ac26cfb55d37332f
30 Nfa9947818e8d4ce7a29d81d1aea751b7
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100712602
32 https://doi.org/10.1007/s11630-018-0982-7
33 schema:sdDatePublished 2019-04-10T15:47
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N5d427ad857354241809d89777b431bc9
36 schema:url http://link.springer.com/10.1007/s11630-018-0982-7
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N006d7ab4c14d46e5af25db1c501732de schema:affiliation https://www.grid.ac/institutes/grid.181531.f
41 schema:familyName Wang
42 schema:givenName Jin
43 rdf:type schema:Person
44 N1181d14a8d074500b140358e45159205 schema:name Department of Environmental Stewardship, Company of Lark World, 100044, Beijing, China
45 rdf:type schema:Organization
46 N14d4f0f82e2b462d9818cc7d92279d90 rdf:first N4f20d8dda55e42bf9b0d28820b8e5179
47 rdf:rest rdf:nil
48 N28aa7342098441d980489360126781ef rdf:first Ne5e37e0b9fdd43aba3716df7245f5354
49 rdf:rest Nb7593311b45349229be50cae7e0cc26a
50 N3a475ce3105a470aaa0bb4b63a23af9e rdf:first Nd14b3ed815fc4b62bf390ca1142752d2
51 rdf:rest N14d4f0f82e2b462d9818cc7d92279d90
52 N4f20d8dda55e42bf9b0d28820b8e5179 schema:affiliation Nedefde65f06c4910964679e707e6b92d
53 schema:familyName Shi
54 schema:givenName Cheng
55 rdf:type schema:Person
56 N536599f29759442f888c1761051ac250 schema:name doi
57 schema:value 10.1007/s11630-018-0982-7
58 rdf:type schema:PropertyValue
59 N5d427ad857354241809d89777b431bc9 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N71f05ce2338e4d3ca74a8650031541d3 schema:volumeNumber 27
62 rdf:type schema:PublicationVolume
63 Nb37497172b5248d0ac26cfb55d37332f schema:name dimensions_id
64 schema:value pub.1100712602
65 rdf:type schema:PropertyValue
66 Nb7593311b45349229be50cae7e0cc26a rdf:first N006d7ab4c14d46e5af25db1c501732de
67 rdf:rest N3a475ce3105a470aaa0bb4b63a23af9e
68 Nd14b3ed815fc4b62bf390ca1142752d2 schema:affiliation N1181d14a8d074500b140358e45159205
69 schema:familyName Wang
70 schema:givenName Jiajin
71 rdf:type schema:Person
72 Ne4ce1e79af4b4b7494e46c82dbfc4090 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 Ne5e37e0b9fdd43aba3716df7245f5354 schema:affiliation https://www.grid.ac/institutes/grid.181531.f
75 schema:familyName Wang
76 schema:givenName Miao
77 rdf:type schema:Person
78 Nedefde65f06c4910964679e707e6b92d schema:name Department of Energy Industry, China International Engineering Consulting Corporation, 100044, Beijing, China
79 rdf:type schema:Organization
80 Nfa9947818e8d4ce7a29d81d1aea751b7 schema:name readcube_id
81 schema:value 54fe30a53d0c3fcbcc701b28eb7f4d1bef93e6992e57060592321b76abf197b0
82 rdf:type schema:PropertyValue
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
87 schema:name Interdisciplinary Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1136366 schema:issn 1003-2169
90 1993-033X
91 schema:name Journal of Thermal Science
92 rdf:type schema:Periodical
93 https://doi.org/10.1016/j.applthermaleng.2007.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023465617
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.applthermaleng.2015.05.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013396745
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.applthermaleng.2015.09.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018217106
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.applthermaleng.2016.08.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045810316
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.enconman.2006.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014660143
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.enconman.2007.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028225135
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.enconman.2014.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014074554
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035096879
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023092614
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0360-1323(00)00098-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002417115
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s1359-4311(03)00201-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032463583
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1115/1.2822554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062085130
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1115/1.3245655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062111754
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.181531.f schema:alternateName Beijing Jiaotong University
120 schema:name Department of Municipal & Environmental Engineering, Beijing Jiaotong University, 100044, Beijing, China
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...