Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02

AUTHORS

Miao Wang, Jin Wang, Jiajin Wang, Cheng Shi

ABSTRACT

A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout. More... »

PAGES

39-47

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11630-018-0982-7

DOI

http://dx.doi.org/10.1007/s11630-018-0982-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100712602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "Department of Municipal & Environmental Engineering, Beijing Jiaotong University, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Miao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "Department of Municipal & Environmental Engineering, Beijing Jiaotong University, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Environmental Stewardship, Company of Lark World, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jiajin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Energy Industry, China International Engineering Consulting Corporation, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Cheng", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0360-1323(00)00098-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002417115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013396745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013396745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013396745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.05.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013396745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2014.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014074554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2006.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014660143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.09.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018217106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023092614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2007.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023465617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2007.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028225135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-4311(03)00201-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032463583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-4311(03)00201-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032463583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035096879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.08.190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045810316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2822554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062085130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3245655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062111754"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02", 
    "datePublishedReg": "2018-02-01", 
    "description": "A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11630-018-0982-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136366", 
        "issn": [
          "1003-2169", 
          "1993-033X"
        ], 
        "name": "Journal of Thermal Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower", 
    "pagination": "39-47", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "54fe30a53d0c3fcbcc701b28eb7f4d1bef93e6992e57060592321b76abf197b0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11630-018-0982-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100712602"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11630-018-0982-7", 
      "https://app.dimensions.ai/details/publication/pub.1100712602"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11630-018-0982-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-018-0982-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-018-0982-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-018-0982-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-018-0982-7'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11630-018-0982-7 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N34ce043907694923a5707cfce8dfbdbe
4 schema:citation https://doi.org/10.1016/j.applthermaleng.2007.03.036
5 https://doi.org/10.1016/j.applthermaleng.2015.05.065
6 https://doi.org/10.1016/j.applthermaleng.2015.09.054
7 https://doi.org/10.1016/j.applthermaleng.2016.08.190
8 https://doi.org/10.1016/j.enconman.2006.04.002
9 https://doi.org/10.1016/j.enconman.2007.04.018
10 https://doi.org/10.1016/j.enconman.2014.10.031
11 https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.004
12 https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.008
13 https://doi.org/10.1016/s0360-1323(00)00098-6
14 https://doi.org/10.1016/s1359-4311(03)00201-1
15 https://doi.org/10.1115/1.2822554
16 https://doi.org/10.1115/1.3245655
17 schema:datePublished 2018-02
18 schema:datePublishedReg 2018-02-01
19 schema:description A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N789ef72a3a9741aa9451a4304f1cba73
24 Nedf6d4d569964e9992f0908dfe1d9aeb
25 sg:journal.1136366
26 schema:name Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower
27 schema:pagination 39-47
28 schema:productId N02230e40c93b4785abc3b2fe32d55694
29 N6b73df920488407fa0673af1e3879052
30 Nadcb7b9aebbe4112ba16eb6fd38cd781
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100712602
32 https://doi.org/10.1007/s11630-018-0982-7
33 schema:sdDatePublished 2019-04-10T15:47
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nf92b766c38dd4dcfaf2f3f2350a03801
36 schema:url http://link.springer.com/10.1007/s11630-018-0982-7
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N001bd4d318b9481ea719765745cccb4d rdf:first Nec7fddc7af124b6a9f2f2eb1ca9333c7
41 rdf:rest N7588bb1f9f6740adbe2231cd5debc5c6
42 N02230e40c93b4785abc3b2fe32d55694 schema:name dimensions_id
43 schema:value pub.1100712602
44 rdf:type schema:PropertyValue
45 N086b20050f2f44b0a8fcae64273dfd9b schema:affiliation N8fa943c653db4c4583adbc46fee68bba
46 schema:familyName Shi
47 schema:givenName Cheng
48 rdf:type schema:Person
49 N34ce043907694923a5707cfce8dfbdbe rdf:first N8000867af290404db04da7130c3b96a5
50 rdf:rest Nf1be13f7971a4eac84d7c63ad4a87949
51 N6b73df920488407fa0673af1e3879052 schema:name doi
52 schema:value 10.1007/s11630-018-0982-7
53 rdf:type schema:PropertyValue
54 N7588bb1f9f6740adbe2231cd5debc5c6 rdf:first N086b20050f2f44b0a8fcae64273dfd9b
55 rdf:rest rdf:nil
56 N789ef72a3a9741aa9451a4304f1cba73 schema:volumeNumber 27
57 rdf:type schema:PublicationVolume
58 N8000867af290404db04da7130c3b96a5 schema:affiliation https://www.grid.ac/institutes/grid.181531.f
59 schema:familyName Wang
60 schema:givenName Miao
61 rdf:type schema:Person
62 N8fa943c653db4c4583adbc46fee68bba schema:name Department of Energy Industry, China International Engineering Consulting Corporation, 100044, Beijing, China
63 rdf:type schema:Organization
64 Nadcb7b9aebbe4112ba16eb6fd38cd781 schema:name readcube_id
65 schema:value 54fe30a53d0c3fcbcc701b28eb7f4d1bef93e6992e57060592321b76abf197b0
66 rdf:type schema:PropertyValue
67 Nb9c236ea50144669868da5b57e744ac5 schema:affiliation https://www.grid.ac/institutes/grid.181531.f
68 schema:familyName Wang
69 schema:givenName Jin
70 rdf:type schema:Person
71 Nc897c895a35a4c7eabc74a566caf8b5a schema:name Department of Environmental Stewardship, Company of Lark World, 100044, Beijing, China
72 rdf:type schema:Organization
73 Nec7fddc7af124b6a9f2f2eb1ca9333c7 schema:affiliation Nc897c895a35a4c7eabc74a566caf8b5a
74 schema:familyName Wang
75 schema:givenName Jiajin
76 rdf:type schema:Person
77 Nedf6d4d569964e9992f0908dfe1d9aeb schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 Nf1be13f7971a4eac84d7c63ad4a87949 rdf:first Nb9c236ea50144669868da5b57e744ac5
80 rdf:rest N001bd4d318b9481ea719765745cccb4d
81 Nf92b766c38dd4dcfaf2f3f2350a03801 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
87 schema:name Interdisciplinary Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1136366 schema:issn 1003-2169
90 1993-033X
91 schema:name Journal of Thermal Science
92 rdf:type schema:Periodical
93 https://doi.org/10.1016/j.applthermaleng.2007.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023465617
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.applthermaleng.2015.05.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013396745
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.applthermaleng.2015.09.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018217106
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.applthermaleng.2016.08.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045810316
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.enconman.2006.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014660143
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.enconman.2007.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028225135
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.enconman.2014.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014074554
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035096879
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023092614
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0360-1323(00)00098-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002417115
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s1359-4311(03)00201-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032463583
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1115/1.2822554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062085130
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1115/1.3245655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062111754
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.181531.f schema:alternateName Beijing Jiaotong University
120 schema:name Department of Municipal & Environmental Engineering, Beijing Jiaotong University, 100044, Beijing, China
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...