Effects of acoustic barriers and crosswind on the operating performance of evaporative cooling tower groups View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

Chao Dang, Li Jia, Lixin Yang

ABSTRACT

Most evaporative cooling towers are arranged on building roof due to the limitation of space and noise, and acoustic barriers are always installed around cooling towers in practical applications. The existence of acoustic barriers and crosswind may affect the recirculation phenomenon which is directly related to the operating performance of cooling towers. In this study, a physical and mathematical computation model is proposed to research the crosswind and distance between acoustic barriers and inlet of cooling towers. Both sensible and latent heat are considered in this research. The reflux flow rate and performance ratio are obtained to evaluate the recirculation and operating performance, respectively. The results show that the higher the crosswind velocity, the larger the reflux flow rate, and the lower the performance ratio of cooling tower groups. For high crosswind velocity, the presence of acoustic barriers is useful to inhibit reflux and improve operating performance, especially for ICE cooling tower groups. In addition, the optimum values are recommended for LiBr/ICE cooling tower groups in the research cases The variation of reflux flow rate and performance ratio with the acoustic barriers’ distance presents a parabolic tendency. More... »

PAGES

532-541

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11630-016-0895-2

DOI

http://dx.doi.org/10.1007/s11630-016-0895-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035685828


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "Institute of Thermal Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, 100044, Beijing, China", 
            "Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dang", 
        "givenName": "Chao", 
        "id": "sg:person.010505515204.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010505515204.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "Institute of Thermal Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, 100044, Beijing, China", 
            "Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Li", 
        "id": "sg:person.013573622421.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573622421.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "Institute of Thermal Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, 100044, Beijing, China", 
            "Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Lixin", 
        "id": "sg:person.010404345764.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010404345764.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.enconman.2015.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001920768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0890-4332(93)90033-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002981710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0890-4332(93)90033-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002981710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0895-7177(89)90135-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004960477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2003.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005827269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2011.08.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006903245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(71)90382-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008809203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(71)90382-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008809203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009591695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009817106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2008.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013824558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2011.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014580031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2013.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022765410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jweia.2014.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024509167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2014.11.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028870556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2013.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032320280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2013.04.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036566463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2014.04.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037364320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0035-3159(98)80092-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037851026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2012.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039164329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b0-12-227090-8/00405-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039199292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2015.11.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042723306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2014.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043604943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0255-2701(97)00006-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044021420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0306-2619(01)00039-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045437275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-7506-8519-1.00006-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047281861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-5442(98)00044-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047306900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-016597-4.50057-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047466760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2005.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049894673"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "Most evaporative cooling towers are arranged on building roof due to the limitation of space and noise, and acoustic barriers are always installed around cooling towers in practical applications. The existence of acoustic barriers and crosswind may affect the recirculation phenomenon which is directly related to the operating performance of cooling towers. In this study, a physical and mathematical computation model is proposed to research the crosswind and distance between acoustic barriers and inlet of cooling towers. Both sensible and latent heat are considered in this research. The reflux flow rate and performance ratio are obtained to evaluate the recirculation and operating performance, respectively. The results show that the higher the crosswind velocity, the larger the reflux flow rate, and the lower the performance ratio of cooling tower groups. For high crosswind velocity, the presence of acoustic barriers is useful to inhibit reflux and improve operating performance, especially for ICE cooling tower groups. In addition, the optimum values are recommended for LiBr/ICE cooling tower groups in the research cases The variation of reflux flow rate and performance ratio with the acoustic barriers\u2019 distance presents a parabolic tendency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11630-016-0895-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136366", 
        "issn": [
          "1003-2169", 
          "1993-033X"
        ], 
        "name": "Journal of Thermal Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Effects of acoustic barriers and crosswind on the operating performance of evaporative cooling tower groups", 
    "pagination": "532-541", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a9fe8a232b5af16f902922b9b61bb6023f42d6bbc49cd8720009572109e80203"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11630-016-0895-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035685828"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11630-016-0895-2", 
      "https://app.dimensions.ai/details/publication/pub.1035685828"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70058_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11630-016-0895-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-016-0895-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-016-0895-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-016-0895-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-016-0895-2'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11630-016-0895-2 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nd6d855e11778414f99b485333fe4fa1e
4 schema:citation https://doi.org/10.1016/0022-460x(71)90382-8
5 https://doi.org/10.1016/0890-4332(93)90033-r
6 https://doi.org/10.1016/0895-7177(89)90135-0
7 https://doi.org/10.1016/b0-12-227090-8/00405-x
8 https://doi.org/10.1016/b978-0-08-016597-4.50057-x
9 https://doi.org/10.1016/b978-0-7506-8519-1.00006-2
10 https://doi.org/10.1016/j.apenergy.2003.09.004
11 https://doi.org/10.1016/j.apenergy.2012.06.006
12 https://doi.org/10.1016/j.apenergy.2013.11.024
13 https://doi.org/10.1016/j.apenergy.2015.11.062
14 https://doi.org/10.1016/j.applthermaleng.2005.10.016
15 https://doi.org/10.1016/j.applthermaleng.2008.05.016
16 https://doi.org/10.1016/j.applthermaleng.2014.04.021
17 https://doi.org/10.1016/j.enbuild.2013.02.039
18 https://doi.org/10.1016/j.enconman.2014.12.018
19 https://doi.org/10.1016/j.enconman.2015.11.006
20 https://doi.org/10.1016/j.energy.2011.08.045
21 https://doi.org/10.1016/j.energy.2013.04.052
22 https://doi.org/10.1016/j.energy.2014.11.086
23 https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.075
24 https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.060
25 https://doi.org/10.1016/j.ijthermalsci.2011.10.021
26 https://doi.org/10.1016/j.jweia.2014.11.007
27 https://doi.org/10.1016/s0035-3159(98)80092-5
28 https://doi.org/10.1016/s0255-2701(97)00006-8
29 https://doi.org/10.1016/s0306-2619(01)00039-3
30 https://doi.org/10.1016/s0360-5442(98)00044-9
31 schema:datePublished 2016-12
32 schema:datePublishedReg 2016-12-01
33 schema:description Most evaporative cooling towers are arranged on building roof due to the limitation of space and noise, and acoustic barriers are always installed around cooling towers in practical applications. The existence of acoustic barriers and crosswind may affect the recirculation phenomenon which is directly related to the operating performance of cooling towers. In this study, a physical and mathematical computation model is proposed to research the crosswind and distance between acoustic barriers and inlet of cooling towers. Both sensible and latent heat are considered in this research. The reflux flow rate and performance ratio are obtained to evaluate the recirculation and operating performance, respectively. The results show that the higher the crosswind velocity, the larger the reflux flow rate, and the lower the performance ratio of cooling tower groups. For high crosswind velocity, the presence of acoustic barriers is useful to inhibit reflux and improve operating performance, especially for ICE cooling tower groups. In addition, the optimum values are recommended for LiBr/ICE cooling tower groups in the research cases The variation of reflux flow rate and performance ratio with the acoustic barriers’ distance presents a parabolic tendency.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N6bdc21bcceb94e2abe6a5aec506248a4
38 Nfbb8e8c16a9c415497175479376d3150
39 sg:journal.1136366
40 schema:name Effects of acoustic barriers and crosswind on the operating performance of evaporative cooling tower groups
41 schema:pagination 532-541
42 schema:productId N00baef6c48204d61be6a98324462b1f5
43 N2573300c9a3445c5b5dfea91b50faeb3
44 N8c65d6fb67a7450aa063a4ad68d4ccc2
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035685828
46 https://doi.org/10.1007/s11630-016-0895-2
47 schema:sdDatePublished 2019-04-11T12:42
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N030325afb3384ba58b352698389f113d
50 schema:url https://link.springer.com/10.1007%2Fs11630-016-0895-2
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N00baef6c48204d61be6a98324462b1f5 schema:name readcube_id
55 schema:value a9fe8a232b5af16f902922b9b61bb6023f42d6bbc49cd8720009572109e80203
56 rdf:type schema:PropertyValue
57 N030325afb3384ba58b352698389f113d schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N2573300c9a3445c5b5dfea91b50faeb3 schema:name doi
60 schema:value 10.1007/s11630-016-0895-2
61 rdf:type schema:PropertyValue
62 N6bdc21bcceb94e2abe6a5aec506248a4 schema:issueNumber 6
63 rdf:type schema:PublicationIssue
64 N8c65d6fb67a7450aa063a4ad68d4ccc2 schema:name dimensions_id
65 schema:value pub.1035685828
66 rdf:type schema:PropertyValue
67 Na38634e99554448187696a2dbb5faf5a rdf:first sg:person.013573622421.59
68 rdf:rest Ne21abdf2458142f485c315873766eec4
69 Nd6d855e11778414f99b485333fe4fa1e rdf:first sg:person.010505515204.23
70 rdf:rest Na38634e99554448187696a2dbb5faf5a
71 Ne21abdf2458142f485c315873766eec4 rdf:first sg:person.010404345764.60
72 rdf:rest rdf:nil
73 Nfbb8e8c16a9c415497175479376d3150 schema:volumeNumber 25
74 rdf:type schema:PublicationVolume
75 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
76 schema:name Engineering
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
79 schema:name Interdisciplinary Engineering
80 rdf:type schema:DefinedTerm
81 sg:journal.1136366 schema:issn 1003-2169
82 1993-033X
83 schema:name Journal of Thermal Science
84 rdf:type schema:Periodical
85 sg:person.010404345764.60 schema:affiliation https://www.grid.ac/institutes/grid.181531.f
86 schema:familyName Yang
87 schema:givenName Lixin
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010404345764.60
89 rdf:type schema:Person
90 sg:person.010505515204.23 schema:affiliation https://www.grid.ac/institutes/grid.181531.f
91 schema:familyName Dang
92 schema:givenName Chao
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010505515204.23
94 rdf:type schema:Person
95 sg:person.013573622421.59 schema:affiliation https://www.grid.ac/institutes/grid.181531.f
96 schema:familyName Jia
97 schema:givenName Li
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573622421.59
99 rdf:type schema:Person
100 https://doi.org/10.1016/0022-460x(71)90382-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008809203
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0890-4332(93)90033-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1002981710
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0895-7177(89)90135-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004960477
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/b0-12-227090-8/00405-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039199292
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/b978-0-08-016597-4.50057-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047466760
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/b978-0-7506-8519-1.00006-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047281861
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.apenergy.2003.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005827269
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.apenergy.2012.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039164329
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.apenergy.2013.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032320280
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.apenergy.2015.11.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042723306
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.applthermaleng.2005.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049894673
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.applthermaleng.2008.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013824558
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.applthermaleng.2014.04.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037364320
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.enbuild.2013.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022765410
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.enconman.2014.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043604943
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.enconman.2015.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001920768
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.energy.2011.08.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006903245
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.energy.2013.04.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036566463
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.energy.2014.11.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028870556
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009591695
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009817106
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ijthermalsci.2011.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014580031
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jweia.2014.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024509167
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0035-3159(98)80092-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037851026
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0255-2701(97)00006-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044021420
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0306-2619(01)00039-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045437275
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0360-5442(98)00044-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047306900
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.181531.f schema:alternateName Beijing Jiaotong University
155 schema:name Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, 100044, Beijing, China
156 Institute of Thermal Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, 100044, Beijing, China
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...