CFD study of ejector flow behavior in a blast furnace gas galvanizing plant View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-01-10

AUTHORS

Giorgio Besagni, Riccardo Mereu, Fabio Inzoli

ABSTRACT

In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models (k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided. More... »

PAGES

58-66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11630-015-0756-4

DOI

http://dx.doi.org/10.1007/s11630-015-0756-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014371236


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4643.5", 
          "name": [
            "Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Besagni", 
        "givenName": "Giorgio", 
        "id": "sg:person.016146404051.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016146404051.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4643.5", 
          "name": [
            "Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mereu", 
        "givenName": "Riccardo", 
        "id": "sg:person.011457615767.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011457615767.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4643.5", 
          "name": [
            "Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inzoli", 
        "givenName": "Fabio", 
        "id": "sg:person.015513442756.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513442756.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-97651-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032442737", 
          "https://doi.org/10.1007/978-3-642-97651-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-006-0140-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017589347", 
          "https://doi.org/10.1007/s11630-006-0140-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-003-0042-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003581080", 
          "https://doi.org/10.1007/s11630-003-0042-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11630-013-0648-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026686878", 
          "https://doi.org/10.1007/s11630-013-0648-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-01-10", 
    "datePublishedReg": "2015-01-10", 
    "description": "In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models (k-\u03c9 SST and k-\u025b Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11630-015-0756-4", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136366", 
        "issn": [
          "1003-2169", 
          "1993-033X"
        ], 
        "name": "Journal of Thermal Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "blast furnace gas", 
      "furnace gas", 
      "CFD approach", 
      "flow behavior", 
      "low-grade energy sources", 
      "computational fluid dynamics (CFD) analysis", 
      "Stokes turbulence models", 
      "Reynolds-Averaged Navier", 
      "fluid dynamics analysis", 
      "industrial furnaces", 
      "CFD model", 
      "turbulence model", 
      "exhaust line", 
      "working fluid", 
      "CFD study", 
      "exhaust gases", 
      "pressure drop", 
      "galvanic plants", 
      "natural gas", 
      "ejector", 
      "energy sources", 
      "dynamic analysis", 
      "furnace", 
      "numerical results", 
      "experimental data", 
      "gas", 
      "convergence capability", 
      "future optimization", 
      "Navier", 
      "new system", 
      "air", 
      "behavior", 
      "gases", 
      "critical component", 
      "drop", 
      "optimization", 
      "first part", 
      "system", 
      "case study", 
      "second part", 
      "design", 
      "capability", 
      "model", 
      "fluid", 
      "recent years", 
      "accuracy", 
      "revamping", 
      "plants", 
      "approach", 
      "part", 
      "third part", 
      "components", 
      "source", 
      "results", 
      "terms", 
      "analysis", 
      "study", 
      "interest", 
      "lines", 
      "data", 
      "representation", 
      "suggestions", 
      "years", 
      "paper"
    ], 
    "name": "CFD study of ejector flow behavior in a blast furnace gas galvanizing plant", 
    "pagination": "58-66", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014371236"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11630-015-0756-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11630-015-0756-4", 
      "https://app.dimensions.ai/details/publication/pub.1014371236"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_656.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11630-015-0756-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-015-0756-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-015-0756-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-015-0756-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-015-0756-4'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      92 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11630-015-0756-4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N5dbcd1b8061147b9a2d8488f729d3eb1
4 schema:citation sg:pub.10.1007/978-3-642-97651-3
5 sg:pub.10.1007/s11630-003-0042-8
6 sg:pub.10.1007/s11630-006-0140-5
7 sg:pub.10.1007/s11630-013-0648-4
8 schema:datePublished 2015-01-10
9 schema:datePublishedReg 2015-01-10
10 schema:description In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models (k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf Nb3cd490783314f19a5081c75d85d9faa
14 Nb46fd57e114c44509a922c307e257400
15 sg:journal.1136366
16 schema:keywords CFD approach
17 CFD model
18 CFD study
19 Navier
20 Reynolds-Averaged Navier
21 Stokes turbulence models
22 accuracy
23 air
24 analysis
25 approach
26 behavior
27 blast furnace gas
28 capability
29 case study
30 components
31 computational fluid dynamics (CFD) analysis
32 convergence capability
33 critical component
34 data
35 design
36 drop
37 dynamic analysis
38 ejector
39 energy sources
40 exhaust gases
41 exhaust line
42 experimental data
43 first part
44 flow behavior
45 fluid
46 fluid dynamics analysis
47 furnace
48 furnace gas
49 future optimization
50 galvanic plants
51 gas
52 gases
53 industrial furnaces
54 interest
55 lines
56 low-grade energy sources
57 model
58 natural gas
59 new system
60 numerical results
61 optimization
62 paper
63 part
64 plants
65 pressure drop
66 recent years
67 representation
68 results
69 revamping
70 second part
71 source
72 study
73 suggestions
74 system
75 terms
76 third part
77 turbulence model
78 working fluid
79 years
80 schema:name CFD study of ejector flow behavior in a blast furnace gas galvanizing plant
81 schema:pagination 58-66
82 schema:productId N1ea3e9ed305043c1a02f1ed4bc018af3
83 N94399b2c019d450f9ed8b753647728a5
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014371236
85 https://doi.org/10.1007/s11630-015-0756-4
86 schema:sdDatePublished 2022-09-02T15:57
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Nc5442ef8d8074dba9ffba0104e7c80c2
89 schema:url https://doi.org/10.1007/s11630-015-0756-4
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N1ea3e9ed305043c1a02f1ed4bc018af3 schema:name doi
94 schema:value 10.1007/s11630-015-0756-4
95 rdf:type schema:PropertyValue
96 N5dbcd1b8061147b9a2d8488f729d3eb1 rdf:first sg:person.016146404051.05
97 rdf:rest Nfa8c24f297394bd6941d78b1b374f7fd
98 N94399b2c019d450f9ed8b753647728a5 schema:name dimensions_id
99 schema:value pub.1014371236
100 rdf:type schema:PropertyValue
101 Nb3cd490783314f19a5081c75d85d9faa schema:volumeNumber 24
102 rdf:type schema:PublicationVolume
103 Nb46fd57e114c44509a922c307e257400 schema:issueNumber 1
104 rdf:type schema:PublicationIssue
105 Nc5442ef8d8074dba9ffba0104e7c80c2 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Nd751c591c2ee4214b6dccb7ed880a2fd rdf:first sg:person.015513442756.15
108 rdf:rest rdf:nil
109 Nfa8c24f297394bd6941d78b1b374f7fd rdf:first sg:person.011457615767.54
110 rdf:rest Nd751c591c2ee4214b6dccb7ed880a2fd
111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
112 schema:name Engineering
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
115 schema:name Interdisciplinary Engineering
116 rdf:type schema:DefinedTerm
117 sg:journal.1136366 schema:issn 1003-2169
118 1993-033X
119 schema:name Journal of Thermal Science
120 schema:publisher Springer Nature
121 rdf:type schema:Periodical
122 sg:person.011457615767.54 schema:affiliation grid-institutes:grid.4643.5
123 schema:familyName Mereu
124 schema:givenName Riccardo
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011457615767.54
126 rdf:type schema:Person
127 sg:person.015513442756.15 schema:affiliation grid-institutes:grid.4643.5
128 schema:familyName Inzoli
129 schema:givenName Fabio
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513442756.15
131 rdf:type schema:Person
132 sg:person.016146404051.05 schema:affiliation grid-institutes:grid.4643.5
133 schema:familyName Besagni
134 schema:givenName Giorgio
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016146404051.05
136 rdf:type schema:Person
137 sg:pub.10.1007/978-3-642-97651-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032442737
138 https://doi.org/10.1007/978-3-642-97651-3
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11630-003-0042-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003581080
141 https://doi.org/10.1007/s11630-003-0042-8
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s11630-006-0140-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017589347
144 https://doi.org/10.1007/s11630-006-0140-5
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11630-013-0648-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026686878
147 https://doi.org/10.1007/s11630-013-0648-4
148 rdf:type schema:CreativeWork
149 grid-institutes:grid.4643.5 schema:alternateName Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156, Milan, Italy
150 schema:name Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156, Milan, Italy
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...