Simulation of heat transfer with the growth and collapse of a cavitation bubble near the heated wall View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-08

AUTHORS

Bin Liu, Jun Cai, Fengchao Li, Xiulan Huai

ABSTRACT

The growth and collapse behaviors of a single cavitation bubble near a heated wall and its effect on the heat transfer are numerically investigated. The present study is designed to reveal the mechanism of cavitation enhanced heat transfer from a microscopic perspective. In the simulation, the time-dependent Navier-Stokes equations are solved in an axisymmetric two-dimensional domain. The volume of fluid (VOF) method is employed to track the liquid-gas interface. It is assumed that the gas inside the bubble is compressible vapor, and the surrounding liquid is incompressible water. Mass transfer between two phases is ignored. The calculated bubble profiles were compared to the available experimental data, and a good agreement was obtained. Then, the relationship among bubble motion, flow field and surface heat transfer coefficient was analyzed. On this basis, the effects of such factors as the initial distance between the bubble and the wall, the initial vapor pressure and the initial bubble nucleus size on the heat transfer enhancement are discussed. The present study is helpful to understand the heat transfer phenomenon in presence of cavitation bubble in liquid. More... »

PAGES

352-358

References to SciGraph publications

  • 2010-09. Augmentation of natural convective heat transfer by acoustic cavitation in FRONTIERS OF ENERGY AND POWER ENGINEERING IN CHINA
  • 2012-01. Editorial in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11630-013-0635-9

    DOI

    http://dx.doi.org/10.1007/s11630-013-0635-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031130973


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China", 
                "University of Chinese Academy of Sciences, 100080, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Bin", 
            "id": "sg:person.013440120040.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013440120040.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Engineering Thermophysics", 
              "id": "https://www.grid.ac/institutes/grid.458465.e", 
              "name": [
                "Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "Jun", 
            "id": "sg:person.012745302161.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745302161.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Engineering Thermophysics", 
              "id": "https://www.grid.ac/institutes/grid.458465.e", 
              "name": [
                "Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Fengchao", 
            "id": "sg:person.07521142335.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07521142335.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Engineering Thermophysics", 
              "id": "https://www.grid.ac/institutes/grid.458465.e", 
              "name": [
                "Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huai", 
            "givenName": "Xiulan", 
            "id": "sg:person.016162744126.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016162744126.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1299/jfst.4.210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017007068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2008.09.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026028346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.euromechflu.2010.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027219041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-011-0087-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027258651", 
              "https://doi.org/10.1007/s11665-011-0087-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.fl.13.010181.001421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031900151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035749686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11708-009-0064-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039625571", 
              "https://doi.org/10.1007/s11708-009-0064-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11708-009-0064-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039625571", 
              "https://doi.org/10.1007/s11708-009-0064-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112089002314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053776004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112075003448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053866170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112075003448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053866170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112098008738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053877128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112093003027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053961995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0301-9322(97)88521-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054651664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2337506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057850360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3243288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057923552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.368841", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058001273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2349505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062078715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2953233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062099434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3662286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062137380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1121/1.423851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062375111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/039139880402701007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1076970870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/039139880402701007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1076970870"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-08", 
        "datePublishedReg": "2013-08-01", 
        "description": "The growth and collapse behaviors of a single cavitation bubble near a heated wall and its effect on the heat transfer are numerically investigated. The present study is designed to reveal the mechanism of cavitation enhanced heat transfer from a microscopic perspective. In the simulation, the time-dependent Navier-Stokes equations are solved in an axisymmetric two-dimensional domain. The volume of fluid (VOF) method is employed to track the liquid-gas interface. It is assumed that the gas inside the bubble is compressible vapor, and the surrounding liquid is incompressible water. Mass transfer between two phases is ignored. The calculated bubble profiles were compared to the available experimental data, and a good agreement was obtained. Then, the relationship among bubble motion, flow field and surface heat transfer coefficient was analyzed. On this basis, the effects of such factors as the initial distance between the bubble and the wall, the initial vapor pressure and the initial bubble nucleus size on the heat transfer enhancement are discussed. The present study is helpful to understand the heat transfer phenomenon in presence of cavitation bubble in liquid.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11630-013-0635-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136366", 
            "issn": [
              "1003-2169", 
              "1993-033X"
            ], 
            "name": "Journal of Thermal Science", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "name": "Simulation of heat transfer with the growth and collapse of a cavitation bubble near the heated wall", 
        "pagination": "352-358", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "944df7341feda9e83ced5021f11f17a6c37880e830b3da4371aa0a579c59bfa9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11630-013-0635-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031130973"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11630-013-0635-9", 
          "https://app.dimensions.ai/details/publication/pub.1031130973"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000522.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11630-013-0635-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11630-013-0635-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11630-013-0635-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11630-013-0635-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11630-013-0635-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    148 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11630-013-0635-9 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N4c5d699bcf8a4e358c37909ce7c951a0
    4 schema:citation sg:pub.10.1007/s11665-011-0087-x
    5 sg:pub.10.1007/s11708-009-0064-3
    6 https://doi.org/10.1016/j.applthermaleng.2008.09.015
    7 https://doi.org/10.1016/j.euromechflu.2010.09.002
    8 https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.002
    9 https://doi.org/10.1016/s0301-9322(97)88521-7
    10 https://doi.org/10.1017/s0022112075003448
    11 https://doi.org/10.1017/s0022112089002314
    12 https://doi.org/10.1017/s0022112093003027
    13 https://doi.org/10.1017/s0022112098008738
    14 https://doi.org/10.1063/1.2337506
    15 https://doi.org/10.1063/1.3243288
    16 https://doi.org/10.1063/1.368841
    17 https://doi.org/10.1115/1.2349505
    18 https://doi.org/10.1115/1.2953233
    19 https://doi.org/10.1115/1.3662286
    20 https://doi.org/10.1121/1.423851
    21 https://doi.org/10.1146/annurev.fl.13.010181.001421
    22 https://doi.org/10.1177/039139880402701007
    23 https://doi.org/10.1299/jfst.4.210
    24 schema:datePublished 2013-08
    25 schema:datePublishedReg 2013-08-01
    26 schema:description The growth and collapse behaviors of a single cavitation bubble near a heated wall and its effect on the heat transfer are numerically investigated. The present study is designed to reveal the mechanism of cavitation enhanced heat transfer from a microscopic perspective. In the simulation, the time-dependent Navier-Stokes equations are solved in an axisymmetric two-dimensional domain. The volume of fluid (VOF) method is employed to track the liquid-gas interface. It is assumed that the gas inside the bubble is compressible vapor, and the surrounding liquid is incompressible water. Mass transfer between two phases is ignored. The calculated bubble profiles were compared to the available experimental data, and a good agreement was obtained. Then, the relationship among bubble motion, flow field and surface heat transfer coefficient was analyzed. On this basis, the effects of such factors as the initial distance between the bubble and the wall, the initial vapor pressure and the initial bubble nucleus size on the heat transfer enhancement are discussed. The present study is helpful to understand the heat transfer phenomenon in presence of cavitation bubble in liquid.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N6cd7c540610a44fbbf63a3bfe194e217
    31 N76396b87729c47ac96699bab05956a81
    32 sg:journal.1136366
    33 schema:name Simulation of heat transfer with the growth and collapse of a cavitation bubble near the heated wall
    34 schema:pagination 352-358
    35 schema:productId N0840cb34cb80432b828271ec1b8a1b9c
    36 N27b13cfb70a44534a9fc625ed90b1913
    37 Nf8eeb36d524b4098a7e9590de4c91959
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031130973
    39 https://doi.org/10.1007/s11630-013-0635-9
    40 schema:sdDatePublished 2019-04-10T19:11
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N82d7d1cced5e420f8ab1f7df65dcd5d2
    43 schema:url http://link.springer.com/10.1007%2Fs11630-013-0635-9
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N0840cb34cb80432b828271ec1b8a1b9c schema:name readcube_id
    48 schema:value 944df7341feda9e83ced5021f11f17a6c37880e830b3da4371aa0a579c59bfa9
    49 rdf:type schema:PropertyValue
    50 N27b13cfb70a44534a9fc625ed90b1913 schema:name dimensions_id
    51 schema:value pub.1031130973
    52 rdf:type schema:PropertyValue
    53 N3824b72830aa41aeab08b660d0b70f31 rdf:first sg:person.016162744126.43
    54 rdf:rest rdf:nil
    55 N4c5d699bcf8a4e358c37909ce7c951a0 rdf:first sg:person.013440120040.68
    56 rdf:rest Nf956d344c70740ef8c1937446a99ef6a
    57 N6cd7c540610a44fbbf63a3bfe194e217 schema:issueNumber 4
    58 rdf:type schema:PublicationIssue
    59 N76396b87729c47ac96699bab05956a81 schema:volumeNumber 22
    60 rdf:type schema:PublicationVolume
    61 N82d7d1cced5e420f8ab1f7df65dcd5d2 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Naa7b39a62f2e4315bf290079c073dbcd rdf:first sg:person.07521142335.16
    64 rdf:rest N3824b72830aa41aeab08b660d0b70f31
    65 Nf8eeb36d524b4098a7e9590de4c91959 schema:name doi
    66 schema:value 10.1007/s11630-013-0635-9
    67 rdf:type schema:PropertyValue
    68 Nf956d344c70740ef8c1937446a99ef6a rdf:first sg:person.012745302161.69
    69 rdf:rest Naa7b39a62f2e4315bf290079c073dbcd
    70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Engineering
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Interdisciplinary Engineering
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1136366 schema:issn 1003-2169
    77 1993-033X
    78 schema:name Journal of Thermal Science
    79 rdf:type schema:Periodical
    80 sg:person.012745302161.69 schema:affiliation https://www.grid.ac/institutes/grid.458465.e
    81 schema:familyName Cai
    82 schema:givenName Jun
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745302161.69
    84 rdf:type schema:Person
    85 sg:person.013440120040.68 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
    86 schema:familyName Liu
    87 schema:givenName Bin
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013440120040.68
    89 rdf:type schema:Person
    90 sg:person.016162744126.43 schema:affiliation https://www.grid.ac/institutes/grid.458465.e
    91 schema:familyName Huai
    92 schema:givenName Xiulan
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016162744126.43
    94 rdf:type schema:Person
    95 sg:person.07521142335.16 schema:affiliation https://www.grid.ac/institutes/grid.458465.e
    96 schema:familyName Li
    97 schema:givenName Fengchao
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07521142335.16
    99 rdf:type schema:Person
    100 sg:pub.10.1007/s11665-011-0087-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027258651
    101 https://doi.org/10.1007/s11665-011-0087-x
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s11708-009-0064-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039625571
    104 https://doi.org/10.1007/s11708-009-0064-3
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.applthermaleng.2008.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026028346
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.euromechflu.2010.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027219041
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035749686
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/s0301-9322(97)88521-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054651664
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1017/s0022112075003448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053866170
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1017/s0022112089002314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053776004
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1017/s0022112093003027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053961995
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1017/s0022112098008738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053877128
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1063/1.2337506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057850360
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1063/1.3243288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057923552
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1063/1.368841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058001273
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1115/1.2349505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062078715
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1115/1.2953233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062099434
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1115/1.3662286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062137380
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1121/1.423851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062375111
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1146/annurev.fl.13.010181.001421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031900151
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1177/039139880402701007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076970870
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1299/jfst.4.210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017007068
    141 rdf:type schema:CreativeWork
    142 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
    143 schema:name Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China
    144 University of Chinese Academy of Sciences, 100080, Beijing, China
    145 rdf:type schema:Organization
    146 https://www.grid.ac/institutes/grid.458465.e schema:alternateName Institute of Engineering Thermophysics
    147 schema:name Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China
    148 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...