Distribution of borehole temperature at four high-altitude alpine glaciers in Central Asia View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-09

AUTHORS

Yaping Liu, Shugui Hou, Yetang Wang, Linlin Song

ABSTRACT

The distribution of borehole temperature at four high-altitude alpine glaciers was investigated. The result shows that the temperature ranges from −13.4°C to −1.84°C, indicating the glaciers are cold throughout the boreholes. The negative gradient (i.e., the temperature decreasing with the increasing of depth) due to the advection of ice and climate warming, and the negative gradient moving downwards relates to climate warming, are probably responsible for the observed minimum temperature moving to lower depth in boreholes of the Gyabrag glacier and Miaoergou glacier compared to the previously investigated continental ice core borehole temperature in West China. The borehole temperature at 10 m depth ranges from −8.0°C in the Gyabrag glacier in the central Himalayas to −12.9°C in the Tsabagarav glacier in the Altai range. The borehole temperature at 10 m depth is 3∼4 degrees higher than the calculated mean annual air temperature on the surface of the glaciers and the higher 10 m depth temperature is mainly caused by the production of latent heat due to melt-water percolation and refreezing. The basal temperature is far below the melting point, indicating that the glaciers are frozen to bedrock. The very low temperature gradients near the bedrock suggest that the influence of geothermal flux and ice flow on basal temperature is very weak. The low temperature and small velocity of ice flow of glaciers are beneficial for preservation of the chemical and isotopic information in ice cores. More... »

PAGES

221-227

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11629-009-0254-9

DOI

http://dx.doi.org/10.1007/s11629-009-0254-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021829630


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Beijing, China", 
            "Graduate University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yaping", 
        "id": "sg:person.07512277503.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512277503.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hou", 
        "givenName": "Shugui", 
        "id": "sg:person.013756714103.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013756714103.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yetang", 
        "id": "sg:person.015417770303.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015417770303.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Linlin", 
        "id": "sg:person.012205336520.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205336520.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jqs.622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000519712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.palaeo.2005.11.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000913854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.1978.tb05931.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008725072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.1978.tb05931.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008725072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0277-3791(99)00062-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035304171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/cp-2-21-2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045268585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/cp-2-21-2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045268585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.quascirev.2003.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045568033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3189/172756406781812203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047095539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-037944-9.50016-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048415385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(2001)040<0753:pbfttb>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049169227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024458411589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051181123", 
          "https://doi.org/10.1023/a:1024458411589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3189/172756404781814258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071117537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022143000008704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083767680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022143000042775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083770198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0260305500010247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083771275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0260305500010314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083771282"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-09", 
    "datePublishedReg": "2009-09-01", 
    "description": "The distribution of borehole temperature at four high-altitude alpine glaciers was investigated. The result shows that the temperature ranges from \u221213.4\u00b0C to \u22121.84\u00b0C, indicating the glaciers are cold throughout the boreholes. The negative gradient (i.e., the temperature decreasing with the increasing of depth) due to the advection of ice and climate warming, and the negative gradient moving downwards relates to climate warming, are probably responsible for the observed minimum temperature moving to lower depth in boreholes of the Gyabrag glacier and Miaoergou glacier compared to the previously investigated continental ice core borehole temperature in West China. The borehole temperature at 10 m depth ranges from \u22128.0\u00b0C in the Gyabrag glacier in the central Himalayas to \u221212.9\u00b0C in the Tsabagarav glacier in the Altai range. The borehole temperature at 10 m depth is 3\u223c4 degrees higher than the calculated mean annual air temperature on the surface of the glaciers and the higher 10 m depth temperature is mainly caused by the production of latent heat due to melt-water percolation and refreezing. The basal temperature is far below the melting point, indicating that the glaciers are frozen to bedrock. The very low temperature gradients near the bedrock suggest that the influence of geothermal flux and ice flow on basal temperature is very weak. The low temperature and small velocity of ice flow of glaciers are beneficial for preservation of the chemical and isotopic information in ice cores.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11629-009-0254-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051999", 
        "issn": [
          "1672-6316", 
          "1993-0321"
        ], 
        "name": "Journal of Mountain Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Distribution of borehole temperature at four high-altitude alpine glaciers in Central Asia", 
    "pagination": "221-227", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "680126d38e2d634155d3089ac84b69955c235c5930bdeee2123700ffc9a3f607"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11629-009-0254-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021829630"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11629-009-0254-9", 
      "https://app.dimensions.ai/details/publication/pub.1021829630"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64082_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11629-009-0254-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11629-009-0254-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11629-009-0254-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11629-009-0254-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11629-009-0254-9'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11629-009-0254-9 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nb8fa4b08f9f949ab8745edbc50d085b7
4 schema:citation sg:pub.10.1023/a:1024458411589
5 https://doi.org/10.1002/jqs.622
6 https://doi.org/10.1016/b978-0-08-037944-9.50016-9
7 https://doi.org/10.1016/j.palaeo.2005.11.035
8 https://doi.org/10.1016/j.quascirev.2003.12.013
9 https://doi.org/10.1016/s0277-3791(99)00062-1
10 https://doi.org/10.1017/s0022143000008704
11 https://doi.org/10.1017/s0022143000042775
12 https://doi.org/10.1017/s0260305500010247
13 https://doi.org/10.1017/s0260305500010314
14 https://doi.org/10.1111/j.1365-246x.1978.tb05931.x
15 https://doi.org/10.1175/1520-0450(2001)040<0753:pbfttb>2.0.co;2
16 https://doi.org/10.3189/172756404781814258
17 https://doi.org/10.3189/172756406781812203
18 https://doi.org/10.5194/cp-2-21-2006
19 schema:datePublished 2009-09
20 schema:datePublishedReg 2009-09-01
21 schema:description The distribution of borehole temperature at four high-altitude alpine glaciers was investigated. The result shows that the temperature ranges from −13.4°C to −1.84°C, indicating the glaciers are cold throughout the boreholes. The negative gradient (i.e., the temperature decreasing with the increasing of depth) due to the advection of ice and climate warming, and the negative gradient moving downwards relates to climate warming, are probably responsible for the observed minimum temperature moving to lower depth in boreholes of the Gyabrag glacier and Miaoergou glacier compared to the previously investigated continental ice core borehole temperature in West China. The borehole temperature at 10 m depth ranges from −8.0°C in the Gyabrag glacier in the central Himalayas to −12.9°C in the Tsabagarav glacier in the Altai range. The borehole temperature at 10 m depth is 3∼4 degrees higher than the calculated mean annual air temperature on the surface of the glaciers and the higher 10 m depth temperature is mainly caused by the production of latent heat due to melt-water percolation and refreezing. The basal temperature is far below the melting point, indicating that the glaciers are frozen to bedrock. The very low temperature gradients near the bedrock suggest that the influence of geothermal flux and ice flow on basal temperature is very weak. The low temperature and small velocity of ice flow of glaciers are beneficial for preservation of the chemical and isotopic information in ice cores.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N531a709964f84ac08b617a6201093713
26 Ne3ec0391861c4ef1abce486b7d27c517
27 sg:journal.1051999
28 schema:name Distribution of borehole temperature at four high-altitude alpine glaciers in Central Asia
29 schema:pagination 221-227
30 schema:productId N4be535d000a247bd84933035f17a4a9b
31 Nd76716c30aa14e53b37d60b5b6dc33b2
32 Nf1d51109330e418abe743df31e35bf45
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021829630
34 https://doi.org/10.1007/s11629-009-0254-9
35 schema:sdDatePublished 2019-04-11T09:22
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Ned0d3ca492af4ceb954d5fdcb0992138
38 schema:url http://link.springer.com/10.1007%2Fs11629-009-0254-9
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0b2a25ce1b2d45a8a35f22743d25d49a rdf:first sg:person.015417770303.70
43 rdf:rest N37a85eca89a7459e9893d3f567efa223
44 N37a85eca89a7459e9893d3f567efa223 rdf:first sg:person.012205336520.31
45 rdf:rest rdf:nil
46 N4be535d000a247bd84933035f17a4a9b schema:name readcube_id
47 schema:value 680126d38e2d634155d3089ac84b69955c235c5930bdeee2123700ffc9a3f607
48 rdf:type schema:PropertyValue
49 N531a709964f84ac08b617a6201093713 schema:volumeNumber 6
50 rdf:type schema:PublicationVolume
51 N8824ed50a4f64f0289f01132a2aa7bc9 rdf:first sg:person.013756714103.21
52 rdf:rest N0b2a25ce1b2d45a8a35f22743d25d49a
53 Nb8fa4b08f9f949ab8745edbc50d085b7 rdf:first sg:person.07512277503.72
54 rdf:rest N8824ed50a4f64f0289f01132a2aa7bc9
55 Nd76716c30aa14e53b37d60b5b6dc33b2 schema:name doi
56 schema:value 10.1007/s11629-009-0254-9
57 rdf:type schema:PropertyValue
58 Ne3ec0391861c4ef1abce486b7d27c517 schema:issueNumber 3
59 rdf:type schema:PublicationIssue
60 Ned0d3ca492af4ceb954d5fdcb0992138 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nf1d51109330e418abe743df31e35bf45 schema:name dimensions_id
63 schema:value pub.1021829630
64 rdf:type schema:PropertyValue
65 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
66 schema:name Earth Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
69 schema:name Physical Geography and Environmental Geoscience
70 rdf:type schema:DefinedTerm
71 sg:journal.1051999 schema:issn 1672-6316
72 1993-0321
73 schema:name Journal of Mountain Science
74 rdf:type schema:Periodical
75 sg:person.012205336520.31 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
76 schema:familyName Song
77 schema:givenName Linlin
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205336520.31
79 rdf:type schema:Person
80 sg:person.013756714103.21 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
81 schema:familyName Hou
82 schema:givenName Shugui
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013756714103.21
84 rdf:type schema:Person
85 sg:person.015417770303.70 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
86 schema:familyName Wang
87 schema:givenName Yetang
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015417770303.70
89 rdf:type schema:Person
90 sg:person.07512277503.72 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
91 schema:familyName Liu
92 schema:givenName Yaping
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512277503.72
94 rdf:type schema:Person
95 sg:pub.10.1023/a:1024458411589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051181123
96 https://doi.org/10.1023/a:1024458411589
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/jqs.622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000519712
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/b978-0-08-037944-9.50016-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048415385
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.palaeo.2005.11.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000913854
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.quascirev.2003.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045568033
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0277-3791(99)00062-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035304171
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1017/s0022143000008704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083767680
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1017/s0022143000042775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083770198
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1017/s0260305500010247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083771275
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1017/s0260305500010314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083771282
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1111/j.1365-246x.1978.tb05931.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008725072
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1175/1520-0450(2001)040<0753:pbfttb>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049169227
119 rdf:type schema:CreativeWork
120 https://doi.org/10.3189/172756404781814258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071117537
121 rdf:type schema:CreativeWork
122 https://doi.org/10.3189/172756406781812203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047095539
123 rdf:type schema:CreativeWork
124 https://doi.org/10.5194/cp-2-21-2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045268585
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
127 schema:name Graduate University of Chinese Academy of Sciences, 100049, Beijing, China
128 State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Beijing, China
129 rdf:type schema:Organization
130 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
131 schema:name State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Beijing, China
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...