Use of PROMIS-29® in US Veterans: Diagnostic Concordance and Domain Comparisons with the General Population View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-05-29

AUTHORS

Sherri L. LaVela, Bella Etingen, Scott Miskevics, David Cella

ABSTRACT

BackgroundPROMIS® items have not been widely or systematically used within the Veterans Health Administration (VA).ObjectiveTo examine the concordance of PROMIS-29® scores and medical record diagnosis in US Veterans and to compare Veteran scores relative to US population norms.Design/ParticipantsCross-sectional multi-site survey of Veterans (n = 3221) provided sociodemographic and PROMIS-29® domain data. Electronic medical records provided health condition (depression, anxiety, sleep disorders, pain disorders) diagnosis data.Main MeasuresFor each domain, we calculated PROMIS® standardized T scores and used t tests to compare PROMIS® scores for Veterans diagnosed with each targeted health condition vs. those without that documented clinical diagnosis and compare mean Veterans’ PROMIS-29® with US adult population norms.Key ResultsVeterans with (vs. without) a depression diagnosis reported significantly higher PROMIS® depression scores (60.3 vs. 49.6, p < .0001); those with an anxiety diagnosis (vs. without) reported higher average PROMIS® anxiety scores (62.7 vs. 50.9, p < .0001). Veterans with (vs. without) a pain disorder reported higher pain interference (65.3 vs. 57.7, p < .0001) and pain intensity (6.4 vs. 4.4, p < .0001). Veterans with (vs. without) a sleep disorder reported higher sleep disturbance (55.8 vs. 51.2, p < .0001) and fatigue (57.5 vs. 51.8, p < .0001) PROMIS® scores. Compared with the general population norms, Veterans scored worse across all PROMIS-29® domains.ConclusionsWe found that PROMIS-29® domains are selectively sensitive to expected differences between clinically-defined groups, suggesting their appropriateness as indicators of condition symptomology among Veterans. Notably, Veterans scored worse across all PROMIS-29(R) domains compared with population norms. Taken collectively, our findings suggest that PROMIS-29® may be a useful tool for VA providers to assess patient’s physical and mental health, and because PROMIS® items are normed to the general population, this offers a way to compare the health of Veterans with the adult population at large and identify disparate areas for intervention. More... »

PAGES

1452-1458

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11606-019-05011-9

DOI

http://dx.doi.org/10.1007/s11606-019-05011-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1115974364

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31144276


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anxiety", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Depression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Surveillance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sleep Wake Disorders", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Veterans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Veterans Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare, Health Services Research & Development, Edward Hines Jr. VA Hospital, Hines, IL, USA", 
            "Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LaVela", 
        "givenName": "Sherri L.", 
        "id": "sg:person.01257311041.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257311041.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare, Health Services Research & Development, Edward Hines Jr. VA Hospital, Hines, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.280893.8", 
          "name": [
            "Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare, Health Services Research & Development, Edward Hines Jr. VA Hospital, Hines, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Etingen", 
        "givenName": "Bella", 
        "id": "sg:person.0736603236.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736603236.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare, Health Services Research & Development, Edward Hines Jr. VA Hospital, Hines, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.280893.8", 
          "name": [
            "Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare, Health Services Research & Development, Edward Hines Jr. VA Hospital, Hines, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miskevics", 
        "givenName": "Scott", 
        "id": "sg:person.01116117434.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116117434.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cella", 
        "givenName": "David", 
        "id": "sg:person.012000260477.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012000260477.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11606-015-3453-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044437994", 
          "https://doi.org/10.1007/s11606-015-3453-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10067-016-3476-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022433815", 
          "https://doi.org/10.1007/s10067-016-3476-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00520-016-3189-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050489406", 
          "https://doi.org/10.1007/s00520-016-3189-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00408-016-9850-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052968453", 
          "https://doi.org/10.1007/s00408-016-9850-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05-29", 
    "datePublishedReg": "2019-05-29", 
    "description": "BackgroundPROMIS\u00ae items have not been widely or systematically used within the Veterans Health Administration (VA).ObjectiveTo examine the concordance of PROMIS-29\u00ae scores and medical record diagnosis in US Veterans and to compare Veteran scores relative to US population norms.Design/ParticipantsCross-sectional multi-site survey of Veterans (n\u2009=\u20093221) provided sociodemographic and PROMIS-29\u00ae domain data. Electronic medical records provided health condition (depression, anxiety, sleep disorders, pain disorders) diagnosis data.Main MeasuresFor each domain, we calculated PROMIS\u00ae standardized T scores and used t tests to compare PROMIS\u00ae scores for Veterans diagnosed with each targeted health condition vs. those without that documented clinical diagnosis and compare mean Veterans\u2019 PROMIS-29\u00ae with US adult population norms.Key ResultsVeterans with (vs. without) a depression diagnosis reported significantly higher PROMIS\u00ae depression scores (60.3 vs. 49.6, p\u2009<\u2009.0001); those with an anxiety diagnosis (vs. without) reported higher average PROMIS\u00ae anxiety scores (62.7 vs. 50.9, p\u2009<\u2009.0001). Veterans with (vs. without) a pain disorder reported higher pain interference (65.3 vs. 57.7, p\u2009<\u2009.0001) and pain intensity (6.4 vs. 4.4, p\u2009<\u2009.0001). Veterans with (vs. without) a sleep disorder reported higher sleep disturbance (55.8 vs. 51.2, p\u2009<\u2009.0001) and fatigue (57.5 vs. 51.8, p\u2009<\u2009.0001) PROMIS\u00ae scores. Compared with the general population norms, Veterans scored worse across all PROMIS-29\u00ae domains.ConclusionsWe found that PROMIS-29\u00ae domains are selectively sensitive to expected differences between clinically-defined groups, suggesting their appropriateness as indicators of condition symptomology among Veterans. Notably, Veterans scored worse across all PROMIS-29(R) domains compared with population norms. Taken collectively, our findings suggest that PROMIS-29\u00ae may be a useful tool for VA providers to assess patient\u2019s physical and mental health, and because PROMIS\u00ae items are normed to the general population, this offers a way to compare the health of Veterans with the adult population at large and identify disparate areas for intervention.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11606-019-05011-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1096256", 
        "issn": [
          "0884-8734", 
          "1525-1497"
        ], 
        "name": "Journal of General Internal Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "keywords": [
      "Veterans Health Administration", 
      "PROMIS-29", 
      "population norms", 
      "US veterans", 
      "general population", 
      "higher pain interference", 
      "US population norms", 
      "health of veterans", 
      "high sleep disturbance", 
      "medical record diagnosis", 
      "electronic medical records", 
      "general population norms", 
      "Main MeasuresFor", 
      "pain disorders", 
      "pain interference", 
      "pain intensity", 
      "VA providers", 
      "sleep disturbances", 
      "medical records", 
      "depression diagnosis", 
      "sleep disorders", 
      "depression scores", 
      "record diagnosis", 
      "diagnostic concordance", 
      "Health Administration", 
      "clinical diagnosis", 
      "adult population", 
      "mental health", 
      "veterans' scores", 
      "PROMIS", 
      "health conditions", 
      "anxiety diagnoses", 
      "anxiety scores", 
      "diagnosis", 
      "multi-site survey", 
      "veterans", 
      "scores", 
      "disorders", 
      "diagnosis data", 
      "health", 
      "concordance", 
      "population", 
      "ResultsVeterans", 
      "patients", 
      "ObjectiveTo", 
      "administration", 
      "useful tool", 
      "intervention", 
      "symptomology", 
      "ConclusionsWe", 
      "group", 
      "providers", 
      "findings", 
      "items", 
      "data", 
      "differences", 
      "appropriateness", 
      "records", 
      "test", 
      "disturbances", 
      "survey", 
      "use", 
      "indicators", 
      "comparison", 
      "area", 
      "disparate areas", 
      "domain", 
      "intensity", 
      "tool", 
      "conditions", 
      "domain comparison", 
      "interference", 
      "norms", 
      "way", 
      "domain data", 
      "BackgroundPROMIS", 
      "Design/ParticipantsCross-sectional multi-site survey", 
      "ParticipantsCross-sectional multi-site survey", 
      "health condition (depression, anxiety, sleep disorders, pain disorders) diagnosis data", 
      "condition (depression, anxiety, sleep disorders, pain disorders) diagnosis data", 
      "MeasuresFor", 
      "mean Veterans", 
      "US adult population norms", 
      "adult population norms", 
      "Key ResultsVeterans", 
      "higher PROMIS", 
      "higher average PROMIS", 
      "average PROMIS", 
      "fatigue (57.5 vs. 51.8, p\u2009<\u2009.0001) PROMIS", 
      "condition symptomology"
    ], 
    "name": "Use of PROMIS-29\u00ae in US Veterans: Diagnostic Concordance and Domain Comparisons with the General Population", 
    "pagination": "1452-1458", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1115974364"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11606-019-05011-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31144276"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11606-019-05011-9", 
      "https://app.dimensions.ai/details/publication/pub.1115974364"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_828.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11606-019-05011-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11606-019-05011-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11606-019-05011-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11606-019-05011-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11606-019-05011-9'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      22 PREDICATES      139 URIs      127 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11606-019-05011-9 schema:about N00497b68bbe4438c892e9b39d5b76a7d
2 N0acbd18da4c744dbb29797970d0c7062
3 N1ee9acd6a4564f58b368534e6e989596
4 N2c3c0643d0f64ac39be7ca43fa5d0656
5 N3cac04b851694f5fb57b56def84de605
6 N46d0d83e41f9450d8960f4394e56497d
7 N550ed9bd76a04ab8b727c7feedcd37d5
8 N7570096d1ade470b827eb95cfaa2d95e
9 N7711c06d5d75478b95dc203631502d35
10 N84d94a7aec81422a98af1a29ff537e1d
11 N937358fa2f4d4194bacc8a72b27abf82
12 N98ffedf8fa0b4344952768672e49bbd8
13 Na937b6e327c44605bfefeef4907e578e
14 Nabdddad31a9a4e0a9e0c0fe7e8f92319
15 Naf7a5b5cadb940a8b500077c7f5e67ce
16 Nb8d2b3d4da754d5da5845fc62fb83d3c
17 Nbde2f4d244b94417bf43c8a7b1be9a4a
18 Nccc69f48b04f4f44a39d77d50d2d867b
19 Nd7572c2bfc984e52bc4a5c346edff41f
20 anzsrc-for:11
21 anzsrc-for:1117
22 schema:author N7f9a6eabd5324e4c8ffcf46cd3328720
23 schema:citation sg:pub.10.1007/s00408-016-9850-y
24 sg:pub.10.1007/s00520-016-3189-z
25 sg:pub.10.1007/s10067-016-3476-6
26 sg:pub.10.1007/s11606-015-3453-9
27 schema:datePublished 2019-05-29
28 schema:datePublishedReg 2019-05-29
29 schema:description BackgroundPROMIS® items have not been widely or systematically used within the Veterans Health Administration (VA).ObjectiveTo examine the concordance of PROMIS-29® scores and medical record diagnosis in US Veterans and to compare Veteran scores relative to US population norms.Design/ParticipantsCross-sectional multi-site survey of Veterans (n = 3221) provided sociodemographic and PROMIS-29® domain data. Electronic medical records provided health condition (depression, anxiety, sleep disorders, pain disorders) diagnosis data.Main MeasuresFor each domain, we calculated PROMIS® standardized T scores and used t tests to compare PROMIS® scores for Veterans diagnosed with each targeted health condition vs. those without that documented clinical diagnosis and compare mean Veterans’ PROMIS-29® with US adult population norms.Key ResultsVeterans with (vs. without) a depression diagnosis reported significantly higher PROMIS® depression scores (60.3 vs. 49.6, p < .0001); those with an anxiety diagnosis (vs. without) reported higher average PROMIS® anxiety scores (62.7 vs. 50.9, p < .0001). Veterans with (vs. without) a pain disorder reported higher pain interference (65.3 vs. 57.7, p < .0001) and pain intensity (6.4 vs. 4.4, p < .0001). Veterans with (vs. without) a sleep disorder reported higher sleep disturbance (55.8 vs. 51.2, p < .0001) and fatigue (57.5 vs. 51.8, p < .0001) PROMIS® scores. Compared with the general population norms, Veterans scored worse across all PROMIS-29® domains.ConclusionsWe found that PROMIS-29® domains are selectively sensitive to expected differences between clinically-defined groups, suggesting their appropriateness as indicators of condition symptomology among Veterans. Notably, Veterans scored worse across all PROMIS-29(R) domains compared with population norms. Taken collectively, our findings suggest that PROMIS-29® may be a useful tool for VA providers to assess patient’s physical and mental health, and because PROMIS® items are normed to the general population, this offers a way to compare the health of Veterans with the adult population at large and identify disparate areas for intervention.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N3ed9535a31464a3893d53f0ff5b8ca4e
34 Naa7a52763ce6480d86e15aed29976f1a
35 sg:journal.1096256
36 schema:keywords BackgroundPROMIS
37 ConclusionsWe
38 Design/ParticipantsCross-sectional multi-site survey
39 Health Administration
40 Key ResultsVeterans
41 Main MeasuresFor
42 MeasuresFor
43 ObjectiveTo
44 PROMIS
45 PROMIS-29
46 ParticipantsCross-sectional multi-site survey
47 ResultsVeterans
48 US adult population norms
49 US population norms
50 US veterans
51 VA providers
52 Veterans Health Administration
53 administration
54 adult population
55 adult population norms
56 anxiety diagnoses
57 anxiety scores
58 appropriateness
59 area
60 average PROMIS
61 clinical diagnosis
62 comparison
63 concordance
64 condition (depression, anxiety, sleep disorders, pain disorders) diagnosis data
65 condition symptomology
66 conditions
67 data
68 depression diagnosis
69 depression scores
70 diagnosis
71 diagnosis data
72 diagnostic concordance
73 differences
74 disorders
75 disparate areas
76 disturbances
77 domain
78 domain comparison
79 domain data
80 electronic medical records
81 fatigue (57.5 vs. 51.8, p < .0001) PROMIS
82 findings
83 general population
84 general population norms
85 group
86 health
87 health condition (depression, anxiety, sleep disorders, pain disorders) diagnosis data
88 health conditions
89 health of veterans
90 high sleep disturbance
91 higher PROMIS
92 higher average PROMIS
93 higher pain interference
94 indicators
95 intensity
96 interference
97 intervention
98 items
99 mean Veterans
100 medical record diagnosis
101 medical records
102 mental health
103 multi-site survey
104 norms
105 pain disorders
106 pain intensity
107 pain interference
108 patients
109 population
110 population norms
111 providers
112 record diagnosis
113 records
114 scores
115 sleep disorders
116 sleep disturbances
117 survey
118 symptomology
119 test
120 tool
121 use
122 useful tool
123 veterans
124 veterans' scores
125 way
126 schema:name Use of PROMIS-29® in US Veterans: Diagnostic Concordance and Domain Comparisons with the General Population
127 schema:pagination 1452-1458
128 schema:productId N1681445322f941279995057576dd4b29
129 N411fffb5d2d34eeea3f9c88878df3962
130 N7b933de9e72141048944aac20d87e919
131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115974364
132 https://doi.org/10.1007/s11606-019-05011-9
133 schema:sdDatePublished 2022-01-01T18:53
134 schema:sdLicense https://scigraph.springernature.com/explorer/license/
135 schema:sdPublisher N193a161f5b8b4a8db65343e54fed0fd3
136 schema:url https://doi.org/10.1007/s11606-019-05011-9
137 sgo:license sg:explorer/license/
138 sgo:sdDataset articles
139 rdf:type schema:ScholarlyArticle
140 N00497b68bbe4438c892e9b39d5b76a7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Middle Aged
142 rdf:type schema:DefinedTerm
143 N0acbd18da4c744dbb29797970d0c7062 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Female
145 rdf:type schema:DefinedTerm
146 N1681445322f941279995057576dd4b29 schema:name doi
147 schema:value 10.1007/s11606-019-05011-9
148 rdf:type schema:PropertyValue
149 N193a161f5b8b4a8db65343e54fed0fd3 schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 N1ee9acd6a4564f58b368534e6e989596 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Anxiety
153 rdf:type schema:DefinedTerm
154 N2c3c0643d0f64ac39be7ca43fa5d0656 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Male
156 rdf:type schema:DefinedTerm
157 N3cac04b851694f5fb57b56def84de605 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Veterans
159 rdf:type schema:DefinedTerm
160 N3ed9535a31464a3893d53f0ff5b8ca4e schema:issueNumber 8
161 rdf:type schema:PublicationIssue
162 N411fffb5d2d34eeea3f9c88878df3962 schema:name pubmed_id
163 schema:value 31144276
164 rdf:type schema:PropertyValue
165 N46d0d83e41f9450d8960f4394e56497d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Cohort Studies
167 rdf:type schema:DefinedTerm
168 N550ed9bd76a04ab8b727c7feedcd37d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Surveys and Questionnaires
170 rdf:type schema:DefinedTerm
171 N5af39bd762a94217aabef5ed79ca3008 rdf:first sg:person.01116117434.48
172 rdf:rest Nf11844032bfe4831993dac98a4fdad2a
173 N7570096d1ade470b827eb95cfaa2d95e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Sleep Wake Disorders
175 rdf:type schema:DefinedTerm
176 N7711c06d5d75478b95dc203631502d35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name United States
178 rdf:type schema:DefinedTerm
179 N7b933de9e72141048944aac20d87e919 schema:name dimensions_id
180 schema:value pub.1115974364
181 rdf:type schema:PropertyValue
182 N7f9a6eabd5324e4c8ffcf46cd3328720 rdf:first sg:person.01257311041.59
183 rdf:rest Nb7dc3ff9f6a541338d9511dff6fb9027
184 N84d94a7aec81422a98af1a29ff537e1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Young Adult
186 rdf:type schema:DefinedTerm
187 N937358fa2f4d4194bacc8a72b27abf82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Pain
189 rdf:type schema:DefinedTerm
190 N98ffedf8fa0b4344952768672e49bbd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Cross-Sectional Studies
192 rdf:type schema:DefinedTerm
193 Na937b6e327c44605bfefeef4907e578e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Humans
195 rdf:type schema:DefinedTerm
196 Naa7a52763ce6480d86e15aed29976f1a schema:volumeNumber 34
197 rdf:type schema:PublicationVolume
198 Nabdddad31a9a4e0a9e0c0fe7e8f92319 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Adult
200 rdf:type schema:DefinedTerm
201 Naf7a5b5cadb940a8b500077c7f5e67ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Aged
203 rdf:type schema:DefinedTerm
204 Nb7dc3ff9f6a541338d9511dff6fb9027 rdf:first sg:person.0736603236.23
205 rdf:rest N5af39bd762a94217aabef5ed79ca3008
206 Nb8d2b3d4da754d5da5845fc62fb83d3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Aged, 80 and over
208 rdf:type schema:DefinedTerm
209 Nbde2f4d244b94417bf43c8a7b1be9a4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Population Surveillance
211 rdf:type schema:DefinedTerm
212 Nccc69f48b04f4f44a39d77d50d2d867b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Depression
214 rdf:type schema:DefinedTerm
215 Nd7572c2bfc984e52bc4a5c346edff41f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Veterans Health Services
217 rdf:type schema:DefinedTerm
218 Nf11844032bfe4831993dac98a4fdad2a rdf:first sg:person.012000260477.10
219 rdf:rest rdf:nil
220 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
221 schema:name Medical and Health Sciences
222 rdf:type schema:DefinedTerm
223 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
224 schema:name Public Health and Health Services
225 rdf:type schema:DefinedTerm
226 sg:journal.1096256 schema:issn 0884-8734
227 1525-1497
228 schema:name Journal of General Internal Medicine
229 schema:publisher Springer Nature
230 rdf:type schema:Periodical
231 sg:person.01116117434.48 schema:affiliation grid-institutes:grid.280893.8
232 schema:familyName Miskevics
233 schema:givenName Scott
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116117434.48
235 rdf:type schema:Person
236 sg:person.012000260477.10 schema:affiliation grid-institutes:grid.16753.36
237 schema:familyName Cella
238 schema:givenName David
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012000260477.10
240 rdf:type schema:Person
241 sg:person.01257311041.59 schema:affiliation grid-institutes:grid.16753.36
242 schema:familyName LaVela
243 schema:givenName Sherri L.
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257311041.59
245 rdf:type schema:Person
246 sg:person.0736603236.23 schema:affiliation grid-institutes:grid.280893.8
247 schema:familyName Etingen
248 schema:givenName Bella
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736603236.23
250 rdf:type schema:Person
251 sg:pub.10.1007/s00408-016-9850-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052968453
252 https://doi.org/10.1007/s00408-016-9850-y
253 rdf:type schema:CreativeWork
254 sg:pub.10.1007/s00520-016-3189-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050489406
255 https://doi.org/10.1007/s00520-016-3189-z
256 rdf:type schema:CreativeWork
257 sg:pub.10.1007/s10067-016-3476-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022433815
258 https://doi.org/10.1007/s10067-016-3476-6
259 rdf:type schema:CreativeWork
260 sg:pub.10.1007/s11606-015-3453-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044437994
261 https://doi.org/10.1007/s11606-015-3453-9
262 rdf:type schema:CreativeWork
263 grid-institutes:grid.16753.36 schema:alternateName Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
264 Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
265 schema:name Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
266 Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
267 Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare, Health Services Research & Development, Edward Hines Jr. VA Hospital, Hines, IL, USA
268 rdf:type schema:Organization
269 grid-institutes:grid.280893.8 schema:alternateName Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare, Health Services Research & Development, Edward Hines Jr. VA Hospital, Hines, IL, USA
270 schema:name Department of Veterans Affairs, Center of Innovation for Complex Chronic Healthcare, Health Services Research & Development, Edward Hines Jr. VA Hospital, Hines, IL, USA
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...