Monitoring of fatigue in radiologists during prolonged image interpretation using fNIRS View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-19

AUTHORS

Takashi Nihashi, Takeo Ishigaki, Hiroko Satake, Shinji Ito, Osamu Kaii, Yoshine Mori, Kazuhiro Shimamoto, Hiromichi Fukushima, Kojiro Suzuki, Hiroyasu Umakoshi, Mitsuo Ohashi, Fumio Kawaguchi, Shinji Naganawa

ABSTRACT

PURPOSE: To determine whether functional near-infrared spectroscopy (fNIRS) allows monitoring fatigue in radiologists during prolonged image interpretation. MATERIALS AND METHODS: Nine radiologists participated as subjects in the present study and continuously interpreted medical images and generated reports for cases for more than 4 h under real clinical work conditions. We measured changes in oxygenated hemoglobin concentrations [oxy-Hb] in the prefrontal cortex using 16-channel fNIRS (OEG16ME, Spectratech) every hour during the Stroop task to evaluate fatigue of radiologists and recorded fatigue scale (FS) as a behavior data. RESULTS: Two subjects showed a subjective feeling of fatigue and an apparent decrease in brain activity after 4 h, so the experiment was completed in 4 h. The remaining seven subjects continued the experiment up to 5 h. FS decreased with time, and a significant reduction was observed between before and the end of image interpretation. Seven out of nine subjects showed a minimum [oxy-Hb] change at the end of prolonged image interpretation. The mean change of [oxy-Hb] at the end of all nine subjects was significantly less than the maximum during image interpretation. CONCLUSION: fNIRS using the change of [oxy-Hb] may be useful for monitoring fatigue in radiologists during image interpretation. More... »

PAGES

1-12

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11604-019-00826-2

DOI

http://dx.doi.org/10.1007/s11604-019-00826-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112871153

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30891667


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Komaki City Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415442.2", 
          "name": [
            "Department of Radiology, Komaki City Hospital, 1-20 Johbu, 485-8520, Komaki, Aichi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nihashi", 
        "givenName": "Takashi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Nagoya Jhohoku Radiology Clinic, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishigaki", 
        "givenName": "Takeo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Satake", 
        "givenName": "Hiroko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ito", 
        "givenName": "Shinji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Nagoya Jhohoku Radiology Clinic, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaii", 
        "givenName": "Osamu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anjo Kosei Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413779.f", 
          "name": [
            "Department of Radiology, Anjo Kosei Hospital, Anjo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mori", 
        "givenName": "Yoshine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shimamoto", 
        "givenName": "Kazuhiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Nagoya Jhohoku Radiology Clinic, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukushima", 
        "givenName": "Hiromichi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aichi Medical University", 
          "id": "https://www.grid.ac/institutes/grid.411234.1", 
          "name": [
            "Department of Radiology, Aichi Medical University, Nagakute, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "Kojiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Komaki City Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415442.2", 
          "name": [
            "Department of Radiology, Komaki City Hospital, 1-20 Johbu, 485-8520, Komaki, Aichi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Umakoshi", 
        "givenName": "Hiroyasu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Spectratech, Inc., Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohashi", 
        "givenName": "Mitsuo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Spectratech, Inc., Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawaguchi", 
        "givenName": "Fumio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naganawa", 
        "givenName": "Shinji", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/hbm.1021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001275134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-014-9717-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001732283", 
          "https://doi.org/10.1007/s10278-014-9717-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-014-9717-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001732283", 
          "https://doi.org/10.1007/s10278-014-9717-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.04.098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003794436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.429998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005469894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2014.00046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005549943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacr.2010.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009104520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2014.00549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010214118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/occmed/kqu168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010398732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/a0030694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010981459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neures.2014.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011008413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2522081895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011175514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physbeh.2007.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015392030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bandc.2013.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016528777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/a0017132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019303857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.05.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020017978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep25097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031028601", 
          "https://doi.org/10.1038/srep25097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainres.2008.11.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032578244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-008-0259-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034582248", 
          "https://doi.org/10.1007/s11604-008-0259-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-008-0259-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034582248", 
          "https://doi.org/10.1007/s11604-008-0259-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034625811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2011.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037392044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.braindev.2013.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037878398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainres.2014.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041089019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainres.2013.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043108059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.10052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044928987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pneurobio.2010.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045131036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047113703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2008.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047377074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053208054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.16.16963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069304873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.2001.90.5.1657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074798112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082841953", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2017.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099690701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2017.12.091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100159125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2017.12.091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100159125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.17.18613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101045098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.17.18613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101045098"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-19", 
    "datePublishedReg": "2019-03-19", 
    "description": "PURPOSE: To determine whether functional near-infrared spectroscopy (fNIRS) allows monitoring fatigue in radiologists during prolonged image interpretation.\nMATERIALS AND METHODS: Nine radiologists participated as subjects in the present study and continuously interpreted medical images and generated reports for cases for more than 4\u00a0h under real clinical work conditions. We measured changes in oxygenated hemoglobin concentrations [oxy-Hb] in the prefrontal cortex using 16-channel fNIRS (OEG16ME, Spectratech) every hour during the Stroop task to evaluate fatigue of radiologists and recorded fatigue scale (FS) as a behavior data.\nRESULTS: Two subjects showed a subjective feeling of fatigue and an apparent decrease in brain activity after 4\u00a0h, so the experiment was completed in 4\u00a0h. The remaining seven subjects continued the experiment up to 5\u00a0h. FS decreased with time, and a significant reduction was observed between before and the end of image interpretation. Seven out of nine subjects showed a minimum [oxy-Hb] change at the end of prolonged image interpretation. The mean change of [oxy-Hb] at the end of all nine subjects was significantly less than the maximum during image interpretation.\nCONCLUSION: fNIRS using the change of [oxy-Hb] may be useful for monitoring fatigue in radiologists during image interpretation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11604-019-00826-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095005", 
        "issn": [
          "1867-1071", 
          "1867-108X"
        ], 
        "name": "Japanese Journal of Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Monitoring of fatigue in radiologists during prolonged image interpretation using fNIRS", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "056d86ffae11cac0b68e112851882d7f51dc9d180bcb6cfc8d0bf0bb53996337"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30891667"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101490689"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11604-019-00826-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112871153"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11604-019-00826-2", 
      "https://app.dimensions.ai/details/publication/pub.1112871153"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87106_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11604-019-00826-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11604-019-00826-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11604-019-00826-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11604-019-00826-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11604-019-00826-2'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      60 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11604-019-00826-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1f49a7a110ec4512a8ffe05058856f1b
4 schema:citation sg:pub.10.1007/s10278-014-9717-9
5 sg:pub.10.1007/s11604-008-0259-2
6 sg:pub.10.1038/srep25097
7 https://app.dimensions.ai/details/publication/pub.1082841953
8 https://doi.org/10.1002/hbm.10052
9 https://doi.org/10.1002/hbm.1021
10 https://doi.org/10.1016/j.bandc.2013.12.011
11 https://doi.org/10.1016/j.braindev.2013.01.005
12 https://doi.org/10.1016/j.brainres.2008.11.077
13 https://doi.org/10.1016/j.brainres.2013.07.022
14 https://doi.org/10.1016/j.brainres.2014.03.009
15 https://doi.org/10.1016/j.jacr.2010.03.004
16 https://doi.org/10.1016/j.neures.2014.11.007
17 https://doi.org/10.1016/j.neuroimage.2009.11.020
18 https://doi.org/10.1016/j.neuroimage.2009.12.023
19 https://doi.org/10.1016/j.neuroimage.2013.04.098
20 https://doi.org/10.1016/j.neuroimage.2013.05.126
21 https://doi.org/10.1016/j.neuroimage.2015.07.030
22 https://doi.org/10.1016/j.neuroimage.2017.12.003
23 https://doi.org/10.1016/j.neuroimage.2017.12.091
24 https://doi.org/10.1016/j.neuron.2008.04.013
25 https://doi.org/10.1016/j.neuron.2011.09.025
26 https://doi.org/10.1016/j.physbeh.2007.09.016
27 https://doi.org/10.1016/j.pneurobio.2010.06.002
28 https://doi.org/10.1037/a0017132
29 https://doi.org/10.1037/a0030694
30 https://doi.org/10.1093/occmed/kqu168
31 https://doi.org/10.1117/1.429998
32 https://doi.org/10.1148/radiol.2522081895
33 https://doi.org/10.1152/jappl.2001.90.5.1657
34 https://doi.org/10.2214/ajr.16.16963
35 https://doi.org/10.2214/ajr.17.18613
36 https://doi.org/10.3389/fnhum.2014.00046
37 https://doi.org/10.3389/fnhum.2014.00549
38 schema:datePublished 2019-03-19
39 schema:datePublishedReg 2019-03-19
40 schema:description PURPOSE: To determine whether functional near-infrared spectroscopy (fNIRS) allows monitoring fatigue in radiologists during prolonged image interpretation. MATERIALS AND METHODS: Nine radiologists participated as subjects in the present study and continuously interpreted medical images and generated reports for cases for more than 4 h under real clinical work conditions. We measured changes in oxygenated hemoglobin concentrations [oxy-Hb] in the prefrontal cortex using 16-channel fNIRS (OEG16ME, Spectratech) every hour during the Stroop task to evaluate fatigue of radiologists and recorded fatigue scale (FS) as a behavior data. RESULTS: Two subjects showed a subjective feeling of fatigue and an apparent decrease in brain activity after 4 h, so the experiment was completed in 4 h. The remaining seven subjects continued the experiment up to 5 h. FS decreased with time, and a significant reduction was observed between before and the end of image interpretation. Seven out of nine subjects showed a minimum [oxy-Hb] change at the end of prolonged image interpretation. The mean change of [oxy-Hb] at the end of all nine subjects was significantly less than the maximum during image interpretation. CONCLUSION: fNIRS using the change of [oxy-Hb] may be useful for monitoring fatigue in radiologists during image interpretation.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf sg:journal.1095005
45 schema:name Monitoring of fatigue in radiologists during prolonged image interpretation using fNIRS
46 schema:pagination 1-12
47 schema:productId N6a674f976c3e4834ac6d9e33eeed7ed2
48 Nad289c6775f64feaaa482e79efc0e408
49 Nbc2f401fd26f46d1b41949d63c34c378
50 Ne3d360610f904114b0e56e02190601d0
51 Nf981bb2350314a4fb8cfae5a4570049e
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112871153
53 https://doi.org/10.1007/s11604-019-00826-2
54 schema:sdDatePublished 2019-04-11T12:25
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nac57f8e10a894996b397aca6795e77c7
57 schema:url https://link.springer.com/10.1007%2Fs11604-019-00826-2
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0084b275b18f4f41be3a53db2c59c075 rdf:first Nb7318990e9194b5292338c5d0f333d9a
62 rdf:rest rdf:nil
63 N01884cc5248a45569258bb9302f8ec71 rdf:first N66faa8bfd73e4bd89e1aec307a56b205
64 rdf:rest N298e01fda8ea42e09943e030beefa4af
65 N1533b7047e4f4b45a6388f927b9b2a23 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
66 schema:familyName Shimamoto
67 schema:givenName Kazuhiro
68 rdf:type schema:Person
69 N1f49a7a110ec4512a8ffe05058856f1b rdf:first N55fbaab3ce224870b4547f4e21bce234
70 rdf:rest Nd41ac3d35c5a443580bea064f2f416c2
71 N298e01fda8ea42e09943e030beefa4af rdf:first Na166fa0ed0ae4449acad5b7a7a73052a
72 rdf:rest N0084b275b18f4f41be3a53db2c59c075
73 N345c95f13a494921b1764295ca0d1e23 rdf:first N71d407b9de1f4753b2cb43502013e241
74 rdf:rest Nfb7e955f70f1428c9749ecb0efb241ba
75 N39c4c81a8fc44f9c91a064cd5ee54a96 schema:affiliation Nd67bf66c5cbf48f393f1c22c165f61d4
76 schema:familyName Ishigaki
77 schema:givenName Takeo
78 rdf:type schema:Person
79 N4732b40a1eaf4895b8a9fe3a36678ab5 rdf:first N98d0528fd2d54fe0b0fa1c87f11d0ed6
80 rdf:rest N74ad552820cc46f98489ff45b229dce2
81 N473d74e90e1d4e958afd4538a71c5665 schema:affiliation https://www.grid.ac/institutes/grid.415442.2
82 schema:familyName Umakoshi
83 schema:givenName Hiroyasu
84 rdf:type schema:Person
85 N55fbaab3ce224870b4547f4e21bce234 schema:affiliation https://www.grid.ac/institutes/grid.415442.2
86 schema:familyName Nihashi
87 schema:givenName Takashi
88 rdf:type schema:Person
89 N575c07e0939c4317bb5db4c3410c1145 schema:affiliation Nf1dcc8d3be4c41ac90f1531354b1135a
90 schema:familyName Fukushima
91 schema:givenName Hiromichi
92 rdf:type schema:Person
93 N64b8444be63d4bd5bf3088465048965b schema:affiliation Nb2af50446d28465b8132aa2334b01796
94 schema:familyName Kaii
95 schema:givenName Osamu
96 rdf:type schema:Person
97 N66faa8bfd73e4bd89e1aec307a56b205 schema:affiliation Nffe283a06d054076ac478c2dca9a0a8a
98 schema:familyName Ohashi
99 schema:givenName Mitsuo
100 rdf:type schema:Person
101 N680853d540954c979d3c231ae7873b60 rdf:first N575c07e0939c4317bb5db4c3410c1145
102 rdf:rest Ncedf6acc862e43439dfdeb5970f8958b
103 N6a674f976c3e4834ac6d9e33eeed7ed2 schema:name dimensions_id
104 schema:value pub.1112871153
105 rdf:type schema:PropertyValue
106 N71d407b9de1f4753b2cb43502013e241 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
107 schema:familyName Satake
108 schema:givenName Hiroko
109 rdf:type schema:Person
110 N74ad552820cc46f98489ff45b229dce2 rdf:first N1533b7047e4f4b45a6388f927b9b2a23
111 rdf:rest N680853d540954c979d3c231ae7873b60
112 N829146b9df3c4fb98a8f90c75bde9fdb schema:name Spectratech, Inc., Tokyo, Japan
113 rdf:type schema:Organization
114 N9500fd2f64ee4eceb428946c9b676945 rdf:first N64b8444be63d4bd5bf3088465048965b
115 rdf:rest N4732b40a1eaf4895b8a9fe3a36678ab5
116 N973068700ed34cc3ba944f79c76ef77d schema:affiliation https://www.grid.ac/institutes/grid.411234.1
117 schema:familyName Suzuki
118 schema:givenName Kojiro
119 rdf:type schema:Person
120 N98d0528fd2d54fe0b0fa1c87f11d0ed6 schema:affiliation https://www.grid.ac/institutes/grid.413779.f
121 schema:familyName Mori
122 schema:givenName Yoshine
123 rdf:type schema:Person
124 Na166fa0ed0ae4449acad5b7a7a73052a schema:affiliation N829146b9df3c4fb98a8f90c75bde9fdb
125 schema:familyName Kawaguchi
126 schema:givenName Fumio
127 rdf:type schema:Person
128 Nac57f8e10a894996b397aca6795e77c7 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 Nad289c6775f64feaaa482e79efc0e408 schema:name doi
131 schema:value 10.1007/s11604-019-00826-2
132 rdf:type schema:PropertyValue
133 Nb2af50446d28465b8132aa2334b01796 schema:name Nagoya Jhohoku Radiology Clinic, Nagoya, Japan
134 rdf:type schema:Organization
135 Nb7318990e9194b5292338c5d0f333d9a schema:affiliation https://www.grid.ac/institutes/grid.27476.30
136 schema:familyName Naganawa
137 schema:givenName Shinji
138 rdf:type schema:Person
139 Nbc2f401fd26f46d1b41949d63c34c378 schema:name pubmed_id
140 schema:value 30891667
141 rdf:type schema:PropertyValue
142 Nbd777579fa914c2989e19051eda38576 rdf:first N473d74e90e1d4e958afd4538a71c5665
143 rdf:rest N01884cc5248a45569258bb9302f8ec71
144 Nbf5fdac5bde34874ace9f9ef0a0dceaf schema:affiliation https://www.grid.ac/institutes/grid.27476.30
145 schema:familyName Ito
146 schema:givenName Shinji
147 rdf:type schema:Person
148 Ncedf6acc862e43439dfdeb5970f8958b rdf:first N973068700ed34cc3ba944f79c76ef77d
149 rdf:rest Nbd777579fa914c2989e19051eda38576
150 Nd41ac3d35c5a443580bea064f2f416c2 rdf:first N39c4c81a8fc44f9c91a064cd5ee54a96
151 rdf:rest N345c95f13a494921b1764295ca0d1e23
152 Nd67bf66c5cbf48f393f1c22c165f61d4 schema:name Nagoya Jhohoku Radiology Clinic, Nagoya, Japan
153 rdf:type schema:Organization
154 Ne3d360610f904114b0e56e02190601d0 schema:name readcube_id
155 schema:value 056d86ffae11cac0b68e112851882d7f51dc9d180bcb6cfc8d0bf0bb53996337
156 rdf:type schema:PropertyValue
157 Nf1dcc8d3be4c41ac90f1531354b1135a schema:name Nagoya Jhohoku Radiology Clinic, Nagoya, Japan
158 rdf:type schema:Organization
159 Nf981bb2350314a4fb8cfae5a4570049e schema:name nlm_unique_id
160 schema:value 101490689
161 rdf:type schema:PropertyValue
162 Nfb7e955f70f1428c9749ecb0efb241ba rdf:first Nbf5fdac5bde34874ace9f9ef0a0dceaf
163 rdf:rest N9500fd2f64ee4eceb428946c9b676945
164 Nffe283a06d054076ac478c2dca9a0a8a schema:name Spectratech, Inc., Tokyo, Japan
165 rdf:type schema:Organization
166 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
167 schema:name Information and Computing Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
170 schema:name Artificial Intelligence and Image Processing
171 rdf:type schema:DefinedTerm
172 sg:journal.1095005 schema:issn 1867-1071
173 1867-108X
174 schema:name Japanese Journal of Radiology
175 rdf:type schema:Periodical
176 sg:pub.10.1007/s10278-014-9717-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001732283
177 https://doi.org/10.1007/s10278-014-9717-9
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s11604-008-0259-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034582248
180 https://doi.org/10.1007/s11604-008-0259-2
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/srep25097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031028601
183 https://doi.org/10.1038/srep25097
184 rdf:type schema:CreativeWork
185 https://app.dimensions.ai/details/publication/pub.1082841953 schema:CreativeWork
186 https://doi.org/10.1002/hbm.10052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044928987
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/hbm.1021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001275134
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.bandc.2013.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016528777
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.braindev.2013.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037878398
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.brainres.2008.11.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032578244
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.brainres.2013.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043108059
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.brainres.2014.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041089019
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.jacr.2010.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009104520
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.neures.2014.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011008413
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.neuroimage.2009.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047113703
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.neuroimage.2009.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034625811
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.neuroimage.2013.04.098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003794436
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.neuroimage.2013.05.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020017978
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.neuroimage.2015.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053208054
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.neuroimage.2017.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099690701
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.neuroimage.2017.12.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100159125
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.neuron.2008.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047377074
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.neuron.2011.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037392044
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.physbeh.2007.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015392030
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.pneurobio.2010.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045131036
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1037/a0017132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019303857
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1037/a0030694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010981459
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/occmed/kqu168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010398732
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1117/1.429998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005469894
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1148/radiol.2522081895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011175514
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1152/jappl.2001.90.5.1657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074798112
237 rdf:type schema:CreativeWork
238 https://doi.org/10.2214/ajr.16.16963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069304873
239 rdf:type schema:CreativeWork
240 https://doi.org/10.2214/ajr.17.18613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101045098
241 rdf:type schema:CreativeWork
242 https://doi.org/10.3389/fnhum.2014.00046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005549943
243 rdf:type schema:CreativeWork
244 https://doi.org/10.3389/fnhum.2014.00549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010214118
245 rdf:type schema:CreativeWork
246 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
247 schema:name Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
248 Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.411234.1 schema:alternateName Aichi Medical University
251 schema:name Department of Radiology, Aichi Medical University, Nagakute, Japan
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.413779.f schema:alternateName Anjo Kosei Hospital
254 schema:name Department of Radiology, Anjo Kosei Hospital, Anjo, Japan
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.415442.2 schema:alternateName Komaki City Hospital
257 schema:name Department of Radiology, Komaki City Hospital, 1-20 Johbu, 485-8520, Komaki, Aichi, Japan
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...