Simultaneous whole-body and breast 18F-FDG PET/MRI examinations in patients with breast cancer: a comparison of apparent diffusion coefficients and maximum ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02

AUTHORS

Michiro Sasaki, Mitsuhiro Tozaki, Kazunori Kubota, Wakana Murakami, Daisuke Yotsumoto, Yasuaki Sagara, Yasuyo Ohi, Shunichi Oosako, Yoshiaki Sagara

ABSTRACT

PURPOSE: To compare standardized uptake value (SUV) and apparent diffusion coefficient (ADC) values acquired using a PET/MRI scanner in breast cancer patients. MATERIALS AND METHODS: Whole-body PET/MRI and breast PET/MRI were performed in 108 consecutive patients. Ninety-four patients who had a total of 100 breast cancers were analyzed. SUVmax and ADCmean acquired using breast PET/MRI were compared with pathologic prognostic factors. RESULTS: All the lesions were visually detectable using PET and diffusion-weighted imaging (DWI) on breast PET/MRI; however, lesions were visually undetectable on whole-body DWI in 13 patients (13%) or on whole-body PET in 7 patients (7%). An analysis of ADCmean and SUVmax demonstrated a statistically significant correlation between whole-body imaging and breast imaging (rho = 0.613, p < 0.001 and rho = 0.928, p < 0.001, respectively). In a univariate analysis, SUVmax was significantly correlated with HER2 status (p < 0.001), Ki-67 (p = 0.014), tumor size (p = 0.0177), and nuclear grade (p = 0.0448). In multiple regression analysis, only tumor size (p = 0.00701) was shown to independently influence SUVmax. CONCLUSION: Prone breast imaging was more sensitive than whole-body PET/MRI for detection of breast cancers. Both SUVmax and ADCmean showed limited correlation with pathologic prognostic factors. More... »

PAGES

122-133

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11604-017-0707-y

DOI

http://dx.doi.org/10.1007/s11604-017-0707-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092827787

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29159779


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multimodal Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Whole Body Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Sagara Perth Avenue Clinic, 26-13 Shinyashiki-cho, 892-0838, Kagoshima, Kagoshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sasaki", 
        "givenName": "Michiro", 
        "id": "sg:person.01147521144.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147521144.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Sagara Hospital Affiliated Breast Center, 3-28 Tenokuchi-cho, 892-0845, Kagoshima, Kagoshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tozaki", 
        "givenName": "Mitsuhiro", 
        "id": "sg:person.01072545143.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072545143.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Medical and Dental University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.474906.8", 
          "name": [
            "Department of Medical Informatics, Tokyo Medical and Dental University Hospital, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubota", 
        "givenName": "Kazunori", 
        "id": "sg:person.01024701325.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024701325.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Defense Medical College", 
          "id": "https://www.grid.ac/institutes/grid.416614.0", 
          "name": [
            "Department of Radiology, National Defense Medical College, 3-2 Namiki, 359-0042, Tokorozawa, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murakami", 
        "givenName": "Wakana", 
        "id": "sg:person.011644014353.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644014353.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Breast Surgery, Sagara Hospital, 3-31Mtsubara-ch, 892-0833, Kagoshima, Kagoshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yotsumoto", 
        "givenName": "Daisuke", 
        "id": "sg:person.01230110434.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230110434.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Breast Surgery, Sagara Hospital, 3-31Mtsubara-ch, 892-0833, Kagoshima, Kagoshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sagara", 
        "givenName": "Yasuaki", 
        "id": "sg:person.01231012506.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231012506.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Pathology, Sagara Hospital, 3-31Mtsubara-cho, 892-0833, Kagoshima, Kagoshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohi", 
        "givenName": "Yasuyo", 
        "id": "sg:person.010707775024.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707775024.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Image Inspection Department, Sagara Perth Avenue Clinic, 26-13 Shinyashiki-cho, 892-0838, Kagoshima, Kagoshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oosako", 
        "givenName": "Shunichi", 
        "id": "sg:person.010021077135.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010021077135.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Sagara Hospital Affiliated Breast Center, 3-28 Tenokuchi-cho, 892-0845, Kagoshima, Kagoshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sagara", 
        "givenName": "Yoshiaki", 
        "id": "sg:person.013604361535.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013604361535.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2967/jnumed.111.097501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004138894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2016.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004252780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2016.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004252780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-013-0737-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005241351", 
          "https://doi.org/10.1007/s12149-013-0737-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005823441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007988678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2015.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010646701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.054726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013636390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.092726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019167583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.113.129395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021938661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bmt.2012.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028358194", 
          "https://doi.org/10.1038/bmt.2012.244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1529-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028599706", 
          "https://doi.org/10.1007/s00259-010-1529-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-010-1529-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028599706", 
          "https://doi.org/10.1007/s00259-010-1529-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030162938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/0284186x.2015.1027411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032879003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2014.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035898737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13131306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036456747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1477-7819-10-126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036976828", 
          "https://doi.org/10.1186/1477-7819-10-126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2013.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038856892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3761-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043392289", 
          "https://doi.org/10.1007/s00330-015-3761-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.109348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043785519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-006-9159-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045897122", 
          "https://doi.org/10.1007/s10549-006-9159-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-006-9159-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045897122", 
          "https://doi.org/10.1007/s10549-006-9159-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-4054-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052761327", 
          "https://doi.org/10.1007/s00330-015-4054-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-1008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052972015", 
          "https://doi.org/10.1007/s00259-008-1008-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-1008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052972015", 
          "https://doi.org/10.1007/s00259-008-1008-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054037936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/60/6/2231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059031210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.08.2128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.08.2139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4329/wjr.v8.i8.743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072524984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2000.18.20.3495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074712502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1967/s002449910142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079001475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016151155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079249185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ijo.2017.4012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085552374"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02", 
    "datePublishedReg": "2018-02-01", 
    "description": "PURPOSE: To compare standardized uptake value (SUV) and apparent diffusion coefficient (ADC) values acquired using a PET/MRI scanner in breast cancer patients.\nMATERIALS AND METHODS: Whole-body PET/MRI and breast PET/MRI were performed in 108 consecutive patients. Ninety-four patients who had a total of 100 breast cancers were analyzed. SUVmax and ADCmean acquired using breast PET/MRI were compared with pathologic prognostic factors.\nRESULTS: All the lesions were visually detectable using PET and diffusion-weighted imaging (DWI) on breast PET/MRI; however, lesions were visually undetectable on whole-body DWI in 13 patients (13%) or on whole-body PET in 7 patients (7%). An analysis of ADCmean and SUVmax demonstrated a statistically significant correlation between whole-body imaging and breast imaging (rho\u00a0=\u00a00.613, p\u00a0<\u00a00.001 and rho\u00a0=\u00a00.928, p\u00a0<\u00a00.001, respectively). In a univariate analysis, SUVmax was significantly correlated with HER2 status (p\u00a0<\u00a00.001), Ki-67 (p\u00a0=\u00a00.014), tumor size (p\u00a0=\u00a00.0177), and nuclear grade (p\u00a0=\u00a00.0448). In multiple regression analysis, only tumor size (p\u00a0=\u00a00.00701) was shown to independently influence SUVmax.\nCONCLUSION: Prone breast imaging was more sensitive than whole-body PET/MRI for detection of breast cancers. Both SUVmax and ADCmean showed limited correlation with pathologic prognostic factors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11604-017-0707-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095005", 
        "issn": [
          "1867-1071", 
          "1867-108X"
        ], 
        "name": "Japanese Journal of Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Simultaneous whole-body and breast 18F-FDG PET/MRI examinations in patients with breast cancer: a comparison of apparent diffusion coefficients and maximum standardized uptake values", 
    "pagination": "122-133", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb17fc467073c6ca5333eca11de195d5e48321c1e2687b661dabd48b80385ac9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29159779"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101490689"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11604-017-0707-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092827787"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11604-017-0707-y", 
      "https://app.dimensions.ai/details/publication/pub.1092827787"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000517.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11604-017-0707-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11604-017-0707-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11604-017-0707-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11604-017-0707-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11604-017-0707-y'


 

This table displays all metadata directly associated to this object as RDF triples.

315 TRIPLES      21 PREDICATES      78 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11604-017-0707-y schema:about N0813a2a90e8a4d07802eb1eec617d1c4
2 N085da7cf854449d9a88cb2b52c898cc3
3 N0a2032a60a6840fbba36c7aa58fdcd72
4 N2560a6e07cd5488a86e60c4be112bebb
5 N28b3ebec42254870bb11b0c95538eaa2
6 N2df0940f1d2e45d993abac16403de16d
7 N381a5aa90bfc43dba93ca88eb3b23206
8 N405a042381fe42be8b56a5a38ccb1df4
9 N44409a5c820e4b5a8c163fac90ba50fe
10 N4cb518ea2ff4477ca439dd8e1eb484ba
11 N5b093c70405c4cac90c8696ba64068fa
12 N5dcb07fb91d547b68de2ecd1f6c825cd
13 N63da6e072d8342d2be06336f5730df60
14 N6d638cbf2f3b49f5ae9f32293c82dbd4
15 N860159a205914979813671558dbc7036
16 Nbd980fefb43e43fab938c9e46152b9b6
17 Nd0d69fee33d04015a9894160c9bd2752
18 Nea541da241584aec917d063960bb422b
19 anzsrc-for:11
20 anzsrc-for:1112
21 schema:author N4aed6486cff546839818980d4779aa16
22 schema:citation sg:pub.10.1007/s00259-008-1008-6
23 sg:pub.10.1007/s00259-010-1529-7
24 sg:pub.10.1007/s00330-015-3761-9
25 sg:pub.10.1007/s00330-015-4054-z
26 sg:pub.10.1007/s10549-006-9159-2
27 sg:pub.10.1007/s12149-013-0737-1
28 sg:pub.10.1038/bmt.2012.244
29 sg:pub.10.1186/1477-7819-10-126
30 https://doi.org/10.1002/jmri.25112
31 https://doi.org/10.1002/jmri.25331
32 https://doi.org/10.1016/j.ejrad.2013.11.002
33 https://doi.org/10.1016/j.ejrad.2014.09.008
34 https://doi.org/10.1016/j.ejrad.2015.12.006
35 https://doi.org/10.1016/j.ejrad.2016.02.015
36 https://doi.org/10.1016/j.ejrad.2016.12.019
37 https://doi.org/10.1016/j.mri.2016.10.005
38 https://doi.org/10.1088/0031-9155/60/6/2231
39 https://doi.org/10.1148/radiol.13131306
40 https://doi.org/10.1148/radiol.2016151155
41 https://doi.org/10.1200/jco.2000.18.20.3495
42 https://doi.org/10.1967/s002449910142
43 https://doi.org/10.2214/ajr.08.2128
44 https://doi.org/10.2214/ajr.08.2139
45 https://doi.org/10.2967/jnumed.108.054726
46 https://doi.org/10.2967/jnumed.111.092726
47 https://doi.org/10.2967/jnumed.111.097501
48 https://doi.org/10.2967/jnumed.112.109348
49 https://doi.org/10.2967/jnumed.113.129395
50 https://doi.org/10.3109/0284186x.2015.1027411
51 https://doi.org/10.3892/ijo.2017.4012
52 https://doi.org/10.4329/wjr.v8.i8.743
53 schema:datePublished 2018-02
54 schema:datePublishedReg 2018-02-01
55 schema:description PURPOSE: To compare standardized uptake value (SUV) and apparent diffusion coefficient (ADC) values acquired using a PET/MRI scanner in breast cancer patients. MATERIALS AND METHODS: Whole-body PET/MRI and breast PET/MRI were performed in 108 consecutive patients. Ninety-four patients who had a total of 100 breast cancers were analyzed. SUVmax and ADCmean acquired using breast PET/MRI were compared with pathologic prognostic factors. RESULTS: All the lesions were visually detectable using PET and diffusion-weighted imaging (DWI) on breast PET/MRI; however, lesions were visually undetectable on whole-body DWI in 13 patients (13%) or on whole-body PET in 7 patients (7%). An analysis of ADCmean and SUVmax demonstrated a statistically significant correlation between whole-body imaging and breast imaging (rho = 0.613, p < 0.001 and rho = 0.928, p < 0.001, respectively). In a univariate analysis, SUVmax was significantly correlated with HER2 status (p < 0.001), Ki-67 (p = 0.014), tumor size (p = 0.0177), and nuclear grade (p = 0.0448). In multiple regression analysis, only tumor size (p = 0.00701) was shown to independently influence SUVmax. CONCLUSION: Prone breast imaging was more sensitive than whole-body PET/MRI for detection of breast cancers. Both SUVmax and ADCmean showed limited correlation with pathologic prognostic factors.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf N820274004a444790a0eadc7e90d50091
60 Ne21d97f38efc457ea4c90b1624cd0f61
61 sg:journal.1095005
62 schema:name Simultaneous whole-body and breast 18F-FDG PET/MRI examinations in patients with breast cancer: a comparison of apparent diffusion coefficients and maximum standardized uptake values
63 schema:pagination 122-133
64 schema:productId N07f43e5073b048358d5a8965b2801b44
65 N443a306d5c1a4b21bdc49f75ea8df0a9
66 N4fb0014c3bc34739b1cc16087093a5a3
67 N5e333b4d61c14e90872225817acdcb05
68 Nb8cc5e7a535a4241bd99f8e3f9c25e2a
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092827787
70 https://doi.org/10.1007/s11604-017-0707-y
71 schema:sdDatePublished 2019-04-10T20:48
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nf80c3eaeebc84a2899c6739982287743
74 schema:url http://link.springer.com/10.1007/s11604-017-0707-y
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N07f43e5073b048358d5a8965b2801b44 schema:name readcube_id
79 schema:value fb17fc467073c6ca5333eca11de195d5e48321c1e2687b661dabd48b80385ac9
80 rdf:type schema:PropertyValue
81 N0813a2a90e8a4d07802eb1eec617d1c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Fluorodeoxyglucose F18
83 rdf:type schema:DefinedTerm
84 N085da7cf854449d9a88cb2b52c898cc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Positron-Emission Tomography
86 rdf:type schema:DefinedTerm
87 N0a2032a60a6840fbba36c7aa58fdcd72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Radiopharmaceuticals
89 rdf:type schema:DefinedTerm
90 N0d2fbac6839c4570aadcc16113b8da9f rdf:first sg:person.010021077135.11
91 rdf:rest Nb1f5cd22995a454ca96614518e110d9e
92 N13442829941741cbacc74f2241156612 schema:name Department of Pathology, Sagara Hospital, 3-31Mtsubara-cho, 892-0833, Kagoshima, Kagoshima, Japan
93 rdf:type schema:Organization
94 N1f35e8dda28d4d448ff042c294fe2158 schema:name Department of Breast Surgery, Sagara Hospital, 3-31Mtsubara-ch, 892-0833, Kagoshima, Kagoshima, Japan
95 rdf:type schema:Organization
96 N2560a6e07cd5488a86e60c4be112bebb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Diffusion Magnetic Resonance Imaging
98 rdf:type schema:DefinedTerm
99 N2787751a58234e5eae7727f1343006ad rdf:first sg:person.01231012506.01
100 rdf:rest N68ae8bbd78ee474da472d9b2698616b7
101 N28b3ebec42254870bb11b0c95538eaa2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Breast Neoplasms
103 rdf:type schema:DefinedTerm
104 N2df0940f1d2e45d993abac16403de16d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Aged, 80 and over
106 rdf:type schema:DefinedTerm
107 N381a5aa90bfc43dba93ca88eb3b23206 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Whole Body Imaging
109 rdf:type schema:DefinedTerm
110 N3c03f39bd63545a89b47cb55d8c4ee48 schema:name Image Inspection Department, Sagara Perth Avenue Clinic, 26-13 Shinyashiki-cho, 892-0838, Kagoshima, Kagoshima, Japan
111 rdf:type schema:Organization
112 N405a042381fe42be8b56a5a38ccb1df4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Aged
114 rdf:type schema:DefinedTerm
115 N443a306d5c1a4b21bdc49f75ea8df0a9 schema:name pubmed_id
116 schema:value 29159779
117 rdf:type schema:PropertyValue
118 N44409a5c820e4b5a8c163fac90ba50fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Middle Aged
120 rdf:type schema:DefinedTerm
121 N4aed6486cff546839818980d4779aa16 rdf:first sg:person.01147521144.32
122 rdf:rest N9a9cbfcf57294e93aa0099cccc5c2e43
123 N4cb518ea2ff4477ca439dd8e1eb484ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 N4fb0014c3bc34739b1cc16087093a5a3 schema:name dimensions_id
127 schema:value pub.1092827787
128 rdf:type schema:PropertyValue
129 N5b093c70405c4cac90c8696ba64068fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Young Adult
131 rdf:type schema:DefinedTerm
132 N5dcb07fb91d547b68de2ecd1f6c825cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Retrospective Studies
134 rdf:type schema:DefinedTerm
135 N5e333b4d61c14e90872225817acdcb05 schema:name nlm_unique_id
136 schema:value 101490689
137 rdf:type schema:PropertyValue
138 N63da6e072d8342d2be06336f5730df60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Adult
140 rdf:type schema:DefinedTerm
141 N68ae8bbd78ee474da472d9b2698616b7 rdf:first sg:person.010707775024.95
142 rdf:rest N0d2fbac6839c4570aadcc16113b8da9f
143 N6d638cbf2f3b49f5ae9f32293c82dbd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Breast
145 rdf:type schema:DefinedTerm
146 N820274004a444790a0eadc7e90d50091 schema:volumeNumber 36
147 rdf:type schema:PublicationVolume
148 N860159a205914979813671558dbc7036 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Multimodal Imaging
150 rdf:type schema:DefinedTerm
151 N9a9cbfcf57294e93aa0099cccc5c2e43 rdf:first sg:person.01072545143.04
152 rdf:rest Ne031e6241a5846ef90af42bd370a4829
153 Na53ce3ac885144509705e4bbb7a73209 schema:name Department of Radiology, Sagara Hospital Affiliated Breast Center, 3-28 Tenokuchi-cho, 892-0845, Kagoshima, Kagoshima, Japan
154 rdf:type schema:Organization
155 Naae0e4bddbb24422965f5b848dbfba2d rdf:first sg:person.011644014353.32
156 rdf:rest Ne1926a3f1d1a4e4989076f5e9e26e0e9
157 Nb1f5cd22995a454ca96614518e110d9e rdf:first sg:person.013604361535.65
158 rdf:rest rdf:nil
159 Nb8cc5e7a535a4241bd99f8e3f9c25e2a schema:name doi
160 schema:value 10.1007/s11604-017-0707-y
161 rdf:type schema:PropertyValue
162 Nbd980fefb43e43fab938c9e46152b9b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Female
164 rdf:type schema:DefinedTerm
165 Nd0d69fee33d04015a9894160c9bd2752 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Reproducibility of Results
167 rdf:type schema:DefinedTerm
168 Nd5c2cacf33a14c1f89530669fd723152 schema:name Department of Radiology, Sagara Perth Avenue Clinic, 26-13 Shinyashiki-cho, 892-0838, Kagoshima, Kagoshima, Japan
169 rdf:type schema:Organization
170 Ne031e6241a5846ef90af42bd370a4829 rdf:first sg:person.01024701325.20
171 rdf:rest Naae0e4bddbb24422965f5b848dbfba2d
172 Ne1926a3f1d1a4e4989076f5e9e26e0e9 rdf:first sg:person.01230110434.46
173 rdf:rest N2787751a58234e5eae7727f1343006ad
174 Ne21d97f38efc457ea4c90b1624cd0f61 schema:issueNumber 2
175 rdf:type schema:PublicationIssue
176 Ne6e6c47200ec41f4aa5ce6a82ede7534 schema:name Department of Breast Surgery, Sagara Hospital, 3-31Mtsubara-ch, 892-0833, Kagoshima, Kagoshima, Japan
177 rdf:type schema:Organization
178 Nea541da241584aec917d063960bb422b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Magnetic Resonance Imaging
180 rdf:type schema:DefinedTerm
181 Nf80c3eaeebc84a2899c6739982287743 schema:name Springer Nature - SN SciGraph project
182 rdf:type schema:Organization
183 Nfe80a37518094a3abad19d852c6ffcca schema:name Department of Radiology, Sagara Hospital Affiliated Breast Center, 3-28 Tenokuchi-cho, 892-0845, Kagoshima, Kagoshima, Japan
184 rdf:type schema:Organization
185 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
186 schema:name Medical and Health Sciences
187 rdf:type schema:DefinedTerm
188 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
189 schema:name Oncology and Carcinogenesis
190 rdf:type schema:DefinedTerm
191 sg:journal.1095005 schema:issn 1867-1071
192 1867-108X
193 schema:name Japanese Journal of Radiology
194 rdf:type schema:Periodical
195 sg:person.010021077135.11 schema:affiliation N3c03f39bd63545a89b47cb55d8c4ee48
196 schema:familyName Oosako
197 schema:givenName Shunichi
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010021077135.11
199 rdf:type schema:Person
200 sg:person.01024701325.20 schema:affiliation https://www.grid.ac/institutes/grid.474906.8
201 schema:familyName Kubota
202 schema:givenName Kazunori
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024701325.20
204 rdf:type schema:Person
205 sg:person.010707775024.95 schema:affiliation N13442829941741cbacc74f2241156612
206 schema:familyName Ohi
207 schema:givenName Yasuyo
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707775024.95
209 rdf:type schema:Person
210 sg:person.01072545143.04 schema:affiliation Nfe80a37518094a3abad19d852c6ffcca
211 schema:familyName Tozaki
212 schema:givenName Mitsuhiro
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072545143.04
214 rdf:type schema:Person
215 sg:person.01147521144.32 schema:affiliation Nd5c2cacf33a14c1f89530669fd723152
216 schema:familyName Sasaki
217 schema:givenName Michiro
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147521144.32
219 rdf:type schema:Person
220 sg:person.011644014353.32 schema:affiliation https://www.grid.ac/institutes/grid.416614.0
221 schema:familyName Murakami
222 schema:givenName Wakana
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644014353.32
224 rdf:type schema:Person
225 sg:person.01230110434.46 schema:affiliation Ne6e6c47200ec41f4aa5ce6a82ede7534
226 schema:familyName Yotsumoto
227 schema:givenName Daisuke
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230110434.46
229 rdf:type schema:Person
230 sg:person.01231012506.01 schema:affiliation N1f35e8dda28d4d448ff042c294fe2158
231 schema:familyName Sagara
232 schema:givenName Yasuaki
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231012506.01
234 rdf:type schema:Person
235 sg:person.013604361535.65 schema:affiliation Na53ce3ac885144509705e4bbb7a73209
236 schema:familyName Sagara
237 schema:givenName Yoshiaki
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013604361535.65
239 rdf:type schema:Person
240 sg:pub.10.1007/s00259-008-1008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052972015
241 https://doi.org/10.1007/s00259-008-1008-6
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/s00259-010-1529-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028599706
244 https://doi.org/10.1007/s00259-010-1529-7
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/s00330-015-3761-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043392289
247 https://doi.org/10.1007/s00330-015-3761-9
248 rdf:type schema:CreativeWork
249 sg:pub.10.1007/s00330-015-4054-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052761327
250 https://doi.org/10.1007/s00330-015-4054-z
251 rdf:type schema:CreativeWork
252 sg:pub.10.1007/s10549-006-9159-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045897122
253 https://doi.org/10.1007/s10549-006-9159-2
254 rdf:type schema:CreativeWork
255 sg:pub.10.1007/s12149-013-0737-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005241351
256 https://doi.org/10.1007/s12149-013-0737-1
257 rdf:type schema:CreativeWork
258 sg:pub.10.1038/bmt.2012.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028358194
259 https://doi.org/10.1038/bmt.2012.244
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/1477-7819-10-126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036976828
262 https://doi.org/10.1186/1477-7819-10-126
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1002/jmri.25112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005823441
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1002/jmri.25331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007988678
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/j.ejrad.2013.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038856892
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/j.ejrad.2014.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035898737
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/j.ejrad.2015.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010646701
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.ejrad.2016.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030162938
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/j.ejrad.2016.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054037936
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/j.mri.2016.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004252780
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1088/0031-9155/60/6/2231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059031210
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1148/radiol.13131306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036456747
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1148/radiol.2016151155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079249185
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1200/jco.2000.18.20.3495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074712502
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1967/s002449910142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079001475
289 rdf:type schema:CreativeWork
290 https://doi.org/10.2214/ajr.08.2128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299970
291 rdf:type schema:CreativeWork
292 https://doi.org/10.2214/ajr.08.2139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299973
293 rdf:type schema:CreativeWork
294 https://doi.org/10.2967/jnumed.108.054726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013636390
295 rdf:type schema:CreativeWork
296 https://doi.org/10.2967/jnumed.111.092726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019167583
297 rdf:type schema:CreativeWork
298 https://doi.org/10.2967/jnumed.111.097501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004138894
299 rdf:type schema:CreativeWork
300 https://doi.org/10.2967/jnumed.112.109348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043785519
301 rdf:type schema:CreativeWork
302 https://doi.org/10.2967/jnumed.113.129395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021938661
303 rdf:type schema:CreativeWork
304 https://doi.org/10.3109/0284186x.2015.1027411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032879003
305 rdf:type schema:CreativeWork
306 https://doi.org/10.3892/ijo.2017.4012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085552374
307 rdf:type schema:CreativeWork
308 https://doi.org/10.4329/wjr.v8.i8.743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072524984
309 rdf:type schema:CreativeWork
310 https://www.grid.ac/institutes/grid.416614.0 schema:alternateName National Defense Medical College
311 schema:name Department of Radiology, National Defense Medical College, 3-2 Namiki, 359-0042, Tokorozawa, Saitama, Japan
312 rdf:type schema:Organization
313 https://www.grid.ac/institutes/grid.474906.8 schema:alternateName Tokyo Medical and Dental University Hospital
314 schema:name Department of Medical Informatics, Tokyo Medical and Dental University Hospital, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
315 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...