Methods for optimizing the display conditions of brain magnetic resonance images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

Toshimasa Hara, Yusuke Inoue, Ryutaro Ukisu, Hirofumi Hata

ABSTRACT

PURPOSE: To investigate a method for optimizing the display conditions of brain magnetic resonance (MR) images. MATERIALS AND METHODS: We retrospectively analyzed brain MR images of 120 adults classified into screening, acute cerebral infarction, and brain tumor groups (n = 40 each). Two observers independently displayed the images on a monitor and optimized the display conditions using the W/L and U/L methods. In the W/L method, the observers manipulated the width and level of the display window, while in the U/L method they manipulated the upper and lower levels of the window. The times required were compared between the two methods. Additionally, the appropriateness of the determined window setting was evaluated visually by the respective observer to exclude the possibility that rough, suboptimal adjustment shortened the adjustment time. RESULTS: For both observers and all groups, the time required for optimization was significantly shorter for the U/L method than for the W/L method. The appropriateness of the window setting for the U/L method was equal to or better than that for the W/L method. CONCLUSION: Manipulating the upper and lower levels of the display window appears to improve the efficiency of interpreting brain MR images through rapid optimization of the display condition. More... »

PAGES

622-627

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11604-017-0669-0

DOI

http://dx.doi.org/10.1007/s11604-017-0669-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090832685

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28730468


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Terminals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kitasato University", 
          "id": "https://www.grid.ac/institutes/grid.410786.c", 
          "name": [
            "Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, 252-0374, Minami-ku, Sagamihara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hara", 
        "givenName": "Toshimasa", 
        "id": "sg:person.0733011435.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733011435.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kitasato University", 
          "id": "https://www.grid.ac/institutes/grid.410786.c", 
          "name": [
            "Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, 252-0374, Minami-ku, Sagamihara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inoue", 
        "givenName": "Yusuke", 
        "id": "sg:person.010476276272.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kitasato University", 
          "id": "https://www.grid.ac/institutes/grid.410786.c", 
          "name": [
            "Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, 252-0374, Minami-ku, Sagamihara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ukisu", 
        "givenName": "Ryutaro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kitasato Institute Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415395.f", 
          "name": [
            "Department of Radiology, Kitasato University Hospital, Sagamihara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hata", 
        "givenName": "Hirofumi", 
        "id": "sg:person.01006453750.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006453750.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2463/mrms.6.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006170441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018662355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03168488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019129906", 
          "https://doi.org/10.1007/bf03168488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03168488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019129906", 
          "https://doi.org/10.1007/bf03168488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12194-012-0189-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020032849", 
          "https://doi.org/10.1007/s12194-012-0189-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12194-012-0189-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020032849", 
          "https://doi.org/10.1007/s12194-012-0189-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/347120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031963293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047712451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2008.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048660603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.70.829.9059290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064566225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.10037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.174.2.1740311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069322948"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "PURPOSE: To investigate a method for optimizing the display conditions of brain magnetic resonance (MR) images.\nMATERIALS AND METHODS: We retrospectively analyzed brain MR images of 120 adults classified into screening, acute cerebral infarction, and brain tumor groups (n\u00a0=\u00a040 each). Two observers independently displayed the images on a monitor and optimized the display conditions using the W/L and U/L methods. In the W/L method, the observers manipulated the width and level of the display window, while in the U/L method they manipulated the upper and lower levels of the window. The times required were compared between the two methods. Additionally, the appropriateness of the determined window setting was evaluated visually by the respective observer to exclude the possibility that rough, suboptimal adjustment shortened the adjustment time.\nRESULTS: For both observers and all groups, the time required for optimization was significantly shorter for the U/L method than for the W/L method. The appropriateness of the window setting for the U/L method was equal to or better than that for the W/L method.\nCONCLUSION: Manipulating the upper and lower levels of the display window appears to improve the efficiency of interpreting brain MR images through rapid optimization of the display condition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11604-017-0669-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095005", 
        "issn": [
          "1867-1071", 
          "1867-108X"
        ], 
        "name": "Japanese Journal of Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Methods for optimizing the display conditions of brain magnetic resonance images", 
    "pagination": "622-627", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "862e842156ad27bc2e4d534274f6ecb1f7bea5824f2734f55c4ba60eeb54722c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28730468"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101490689"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11604-017-0669-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090832685"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11604-017-0669-0", 
      "https://app.dimensions.ai/details/publication/pub.1090832685"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54316_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11604-017-0669-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11604-017-0669-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11604-017-0669-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11604-017-0669-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11604-017-0669-0'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      52 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11604-017-0669-0 schema:about N160e5eb3a1d84dbda015c2586e31607d
2 N25f562f99b66434faeb4b84f7dac0bd8
3 N2f3289f7817849e8a8745a386bc01d64
4 N30cbb64fa10d4740b0530264c27aa17b
5 N4888291f035e48a9b9ae81a9ceb4e73d
6 N5bf6b1cd9bc946e5af428b5c92b9d862
7 N5d5e4f0566ca4e2ca88b610c9c898c69
8 Nb339ccab329e4c33ad7a5aa650624677
9 Nc9aed2fd772341f5a28edf65e9dedbc1
10 Nd50f8d9390df4d4188ef010477d5b7fd
11 Ndb2108c3b9614c0181293ad0b8f6812d
12 Ndf0f506bc21f422388d48ec8ed2f358c
13 Nf8e0c69ada1b4c039f1128fea3db608c
14 anzsrc-for:11
15 anzsrc-for:1109
16 schema:author N0051f29f722f4515a06b3764e3b000e9
17 schema:citation sg:pub.10.1007/bf03168488
18 sg:pub.10.1007/s12194-012-0189-7
19 https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m
20 https://doi.org/10.1002/jmri.23641
21 https://doi.org/10.1016/j.acra.2008.09.012
22 https://doi.org/10.1155/2012/347120
23 https://doi.org/10.1259/bjr.70.829.9059290
24 https://doi.org/10.2214/ajr.12.10037
25 https://doi.org/10.2214/ajr.174.2.1740311
26 https://doi.org/10.2463/mrms.6.133
27 schema:datePublished 2017-10
28 schema:datePublishedReg 2017-10-01
29 schema:description PURPOSE: To investigate a method for optimizing the display conditions of brain magnetic resonance (MR) images. MATERIALS AND METHODS: We retrospectively analyzed brain MR images of 120 adults classified into screening, acute cerebral infarction, and brain tumor groups (n = 40 each). Two observers independently displayed the images on a monitor and optimized the display conditions using the W/L and U/L methods. In the W/L method, the observers manipulated the width and level of the display window, while in the U/L method they manipulated the upper and lower levels of the window. The times required were compared between the two methods. Additionally, the appropriateness of the determined window setting was evaluated visually by the respective observer to exclude the possibility that rough, suboptimal adjustment shortened the adjustment time. RESULTS: For both observers and all groups, the time required for optimization was significantly shorter for the U/L method than for the W/L method. The appropriateness of the window setting for the U/L method was equal to or better than that for the W/L method. CONCLUSION: Manipulating the upper and lower levels of the display window appears to improve the efficiency of interpreting brain MR images through rapid optimization of the display condition.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N4685a4a2e8ec4e478445b4f48ee44126
34 Naf6e0a1625db4e8aaaf24c5882d2949e
35 sg:journal.1095005
36 schema:name Methods for optimizing the display conditions of brain magnetic resonance images
37 schema:pagination 622-627
38 schema:productId N30e3a5caed1d49aa8d44b2b438587ec2
39 N5aa7809204e246f49a33183e66e2a941
40 N5e505c80f3064590a40becb82d23328c
41 Na5f9e79ef94e4dac9b59151496db6f36
42 Nfa0f2481df5b4d1c88b594e07a1b84fb
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090832685
44 https://doi.org/10.1007/s11604-017-0669-0
45 schema:sdDatePublished 2019-04-11T10:18
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N18f7abe835a242fd9ddc79275190af69
48 schema:url https://link.springer.com/10.1007%2Fs11604-017-0669-0
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0051f29f722f4515a06b3764e3b000e9 rdf:first sg:person.0733011435.36
53 rdf:rest Nc1e2a78268d04c9e909cc6a2b41e4732
54 N160e5eb3a1d84dbda015c2586e31607d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Brain Neoplasms
56 rdf:type schema:DefinedTerm
57 N18f7abe835a242fd9ddc79275190af69 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N25f562f99b66434faeb4b84f7dac0bd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Brain Diseases
61 rdf:type schema:DefinedTerm
62 N2f3289f7817849e8a8745a386bc01d64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Aged
64 rdf:type schema:DefinedTerm
65 N30cbb64fa10d4740b0530264c27aa17b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Humans
67 rdf:type schema:DefinedTerm
68 N30e3a5caed1d49aa8d44b2b438587ec2 schema:name doi
69 schema:value 10.1007/s11604-017-0669-0
70 rdf:type schema:PropertyValue
71 N4685a4a2e8ec4e478445b4f48ee44126 schema:volumeNumber 35
72 rdf:type schema:PublicationVolume
73 N4888291f035e48a9b9ae81a9ceb4e73d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Retrospective Studies
75 rdf:type schema:DefinedTerm
76 N5aa7809204e246f49a33183e66e2a941 schema:name readcube_id
77 schema:value 862e842156ad27bc2e4d534274f6ecb1f7bea5824f2734f55c4ba60eeb54722c
78 rdf:type schema:PropertyValue
79 N5bf6b1cd9bc946e5af428b5c92b9d862 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Male
81 rdf:type schema:DefinedTerm
82 N5d5e4f0566ca4e2ca88b610c9c898c69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Image Interpretation, Computer-Assisted
84 rdf:type schema:DefinedTerm
85 N5e505c80f3064590a40becb82d23328c schema:name dimensions_id
86 schema:value pub.1090832685
87 rdf:type schema:PropertyValue
88 N709dd19e899441bdb2c331902a6de41b rdf:first Nc546fa66f0f041478af5ba0d072b85e4
89 rdf:rest N90fa4921f0ca4579950678254b6541a9
90 N90fa4921f0ca4579950678254b6541a9 rdf:first sg:person.01006453750.32
91 rdf:rest rdf:nil
92 Na5f9e79ef94e4dac9b59151496db6f36 schema:name pubmed_id
93 schema:value 28730468
94 rdf:type schema:PropertyValue
95 Naf6e0a1625db4e8aaaf24c5882d2949e schema:issueNumber 10
96 rdf:type schema:PublicationIssue
97 Nb339ccab329e4c33ad7a5aa650624677 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Middle Aged
99 rdf:type schema:DefinedTerm
100 Nc1e2a78268d04c9e909cc6a2b41e4732 rdf:first sg:person.010476276272.43
101 rdf:rest N709dd19e899441bdb2c331902a6de41b
102 Nc546fa66f0f041478af5ba0d072b85e4 schema:affiliation https://www.grid.ac/institutes/grid.410786.c
103 schema:familyName Ukisu
104 schema:givenName Ryutaro
105 rdf:type schema:Person
106 Nc9aed2fd772341f5a28edf65e9dedbc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Brain
108 rdf:type schema:DefinedTerm
109 Nd50f8d9390df4d4188ef010477d5b7fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Brain Infarction
111 rdf:type schema:DefinedTerm
112 Ndb2108c3b9614c0181293ad0b8f6812d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Female
114 rdf:type schema:DefinedTerm
115 Ndf0f506bc21f422388d48ec8ed2f358c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Magnetic Resonance Imaging
117 rdf:type schema:DefinedTerm
118 Nf8e0c69ada1b4c039f1128fea3db608c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Computer Terminals
120 rdf:type schema:DefinedTerm
121 Nfa0f2481df5b4d1c88b594e07a1b84fb schema:name nlm_unique_id
122 schema:value 101490689
123 rdf:type schema:PropertyValue
124 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
125 schema:name Medical and Health Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
128 schema:name Neurosciences
129 rdf:type schema:DefinedTerm
130 sg:journal.1095005 schema:issn 1867-1071
131 1867-108X
132 schema:name Japanese Journal of Radiology
133 rdf:type schema:Periodical
134 sg:person.01006453750.32 schema:affiliation https://www.grid.ac/institutes/grid.415395.f
135 schema:familyName Hata
136 schema:givenName Hirofumi
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006453750.32
138 rdf:type schema:Person
139 sg:person.010476276272.43 schema:affiliation https://www.grid.ac/institutes/grid.410786.c
140 schema:familyName Inoue
141 schema:givenName Yusuke
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43
143 rdf:type schema:Person
144 sg:person.0733011435.36 schema:affiliation https://www.grid.ac/institutes/grid.410786.c
145 schema:familyName Hara
146 schema:givenName Toshimasa
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733011435.36
148 rdf:type schema:Person
149 sg:pub.10.1007/bf03168488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019129906
150 https://doi.org/10.1007/bf03168488
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s12194-012-0189-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020032849
153 https://doi.org/10.1007/s12194-012-0189-7
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1047712451
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/jmri.23641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018662355
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.acra.2008.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048660603
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1155/2012/347120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031963293
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1259/bjr.70.829.9059290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064566225
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2214/ajr.12.10037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302348
166 rdf:type schema:CreativeWork
167 https://doi.org/10.2214/ajr.174.2.1740311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069322948
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2463/mrms.6.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006170441
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.410786.c schema:alternateName Kitasato University
172 schema:name Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, 252-0374, Minami-ku, Sagamihara, Kanagawa, Japan
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.415395.f schema:alternateName Kitasato Institute Hospital
175 schema:name Department of Radiology, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...