Distortion correction in whole-body imaging of live mice using a 1-Tesla compact magnetic resonance imaging system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-06

AUTHORS

Shigeru Kiryu, Yusuke Inoue, Yoshitaka Masutani, Tomoyuki Haishi, Kohki Yoshikawa, Makoto Watanabe, Kuni Ohtomo

ABSTRACT

PURPOSE: The aim of this study was to establish a distortion correction applicable to whole-body imaging of live mice. MATERIALS AND METHODS: All magnetic resonance imaging (MRI) scans were acquired on a compact 1-T permanent magnet unit for mouse imaging using a T1-weighted, three-dimensional (3D) fast low-angle shot sequence. We assessed geometric distortion in MR images of a small 3D grid phantom and determined 3D image transformations for distortion correction. The developed distortion correction was applied to MR images of the 3D grid phantom acquired on another day, and the correction was validated. A two-dimensional (2D) grid phantom was imaged with a mouse to investigate the applicability of the distortion correction to whole-body mouse imaging. RESULTS: Obvious geometric distortion was observed in the MR images of the 3D grid phantom. The application of the developed 3D phantom-based distortion correction reduced distortion in the images of the 3D grid phantom acquired on another day. Geometric distortion was observed in the MR images of the 2D grid phantom acquired together with the mouse. The 3D phantom-based correction decreased the distortion substantially, regardless of mouse positioning. CONCLUSION: The developed distortion correction can reduce distortion in whole-body imaging of live mice and may enhance the capabilities of MRI in small animal experiments. More... »

PAGES

353-360

References to SciGraph publications

  • 2002. RBF-Based Representation of Volumetric Data: Application in Visualization and Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION — MICCAI 2002
  • 2001-01. Aspects of MR Image Distortions in Radiotherapy Treatment Planning in STRAHLENTHERAPIE UND ONKOLOGIE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11604-010-0553-7

    DOI

    http://dx.doi.org/10.1007/s11604-010-0553-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009783953

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21717305


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Enhancement", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Imaging, Three-Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Inbred BALB C", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phantoms, Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Whole Body Imaging", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kiryu", 
            "givenName": "Shigeru", 
            "id": "sg:person.01031733031.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031733031.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kitasato University", 
              "id": "https://www.grid.ac/institutes/grid.410786.c", 
              "name": [
                "Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan", 
                "Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Inoue", 
            "givenName": "Yusuke", 
            "id": "sg:person.010476276272.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Image Computing and Analysis Laboratory, Department of Radiology, University of Tokyo, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Masutani", 
            "givenName": "Yoshitaka", 
            "id": "sg:person.0700250567.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700250567.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "MRTechnology Inc., Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haishi", 
            "givenName": "Tomoyuki", 
            "id": "sg:person.01317275052.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317275052.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Komazawa University", 
              "id": "https://www.grid.ac/institutes/grid.440902.b", 
              "name": [
                "Department of Radiotechnical Sciences, Faculty of Radiological Health Sciences, Komazawa University, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoshikawa", 
            "givenName": "Kohki", 
            "id": "sg:person.011305211022.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011305211022.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watanabe", 
            "givenName": "Makoto", 
            "id": "sg:person.01127255405.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127255405.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohtomo", 
            "givenName": "Kuni", 
            "id": "sg:person.01152022531.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152022531.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-45787-9_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006751491", 
              "https://doi.org/10.1007/3-540-45787-9_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mri.2004.01.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012947566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.20713", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018770481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0730-725x(01)00400-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021962649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/383259.383266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024465450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-8140(00)00234-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025215119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.1910310106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027222794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.20651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032772383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.20651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032772383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nbm.1135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033169705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1522-2586(199906)9:6<821::aid-jmri9>3.0.co;2-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037217910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mri.2004.08.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043778499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mri.2009.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049001440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mri.2004.08.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049014365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0730-725x(92)90011-n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050388096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mri.2008.05.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051187877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1227/01.neu.0000317395.08466.e6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051991177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00002385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053693914", 
              "https://doi.org/10.1007/pl00002385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004728-199607000-00032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060189066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1227/00006123-199410000-00016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064433225"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-06", 
        "datePublishedReg": "2011-06-01", 
        "description": "PURPOSE: The aim of this study was to establish a distortion correction applicable to whole-body imaging of live mice.\nMATERIALS AND METHODS: All magnetic resonance imaging (MRI) scans were acquired on a compact 1-T permanent magnet unit for mouse imaging using a T1-weighted, three-dimensional (3D) fast low-angle shot sequence. We assessed geometric distortion in MR images of a small 3D grid phantom and determined 3D image transformations for distortion correction. The developed distortion correction was applied to MR images of the 3D grid phantom acquired on another day, and the correction was validated. A two-dimensional (2D) grid phantom was imaged with a mouse to investigate the applicability of the distortion correction to whole-body mouse imaging.\nRESULTS: Obvious geometric distortion was observed in the MR images of the 3D grid phantom. The application of the developed 3D phantom-based distortion correction reduced distortion in the images of the 3D grid phantom acquired on another day. Geometric distortion was observed in the MR images of the 2D grid phantom acquired together with the mouse. The 3D phantom-based correction decreased the distortion substantially, regardless of mouse positioning.\nCONCLUSION: The developed distortion correction can reduce distortion in whole-body imaging of live mice and may enhance the capabilities of MRI in small animal experiments.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11604-010-0553-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1095005", 
            "issn": [
              "1867-1071", 
              "1867-108X"
            ], 
            "name": "Japanese Journal of Radiology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "name": "Distortion correction in whole-body imaging of live mice using a 1-Tesla compact magnetic resonance imaging system", 
        "pagination": "353-360", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2e9c4155632217ddb67c4771a37faa06e106c3c0c79c8eb6cf5d5b599ed3a93f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21717305"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101490689"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11604-010-0553-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009783953"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11604-010-0553-7", 
          "https://app.dimensions.ai/details/publication/pub.1009783953"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89798_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11604-010-0553-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11604-010-0553-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11604-010-0553-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11604-010-0553-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11604-010-0553-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    237 TRIPLES      21 PREDICATES      62 URIs      35 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11604-010-0553-7 schema:about N0276a19fa7a340509303827bcff2ae56
    2 N28ad51dec8c8460cbb72b7788a6849bf
    3 N41c3bc5f32364802bb6ed7fbf17e6ca8
    4 N4eb315833a074e2cbf33de2a3a5917e8
    5 N62b5b6ff9b9644f6a74071492558b5ed
    6 N6447be1f376f4a2fa7a20046b079c2a2
    7 N6e0531dc9ce84cad838850ca966fd83d
    8 N8570d7d94e7f4efa82e9b0a4835c88a4
    9 Nb1f16ab8bf4b480287945d6b9d63c86d
    10 Nbd05bf9fd3d942d19b3c821d4d83fd18
    11 Nc401c0f896ab402db6d1094dfa1c4ddf
    12 Ndcd9ae79d2584a799c9ca77726de2452
    13 Nee61769a262440ba8a9f8c1fda7e2cad
    14 Nfb80fea462814f1c93c75ef317078948
    15 anzsrc-for:08
    16 anzsrc-for:0801
    17 schema:author Nb81f5c1c7ed440d3a66d244387c7cd85
    18 schema:citation sg:pub.10.1007/3-540-45787-9_38
    19 sg:pub.10.1007/pl00002385
    20 https://doi.org/10.1002/(sici)1522-2586(199906)9:6<821::aid-jmri9>3.0.co;2-2
    21 https://doi.org/10.1002/jmri.20713
    22 https://doi.org/10.1002/mrm.1910310106
    23 https://doi.org/10.1002/mrm.20651
    24 https://doi.org/10.1002/nbm.1135
    25 https://doi.org/10.1016/0730-725x(92)90011-n
    26 https://doi.org/10.1016/j.mri.2004.01.008
    27 https://doi.org/10.1016/j.mri.2004.08.012
    28 https://doi.org/10.1016/j.mri.2004.08.014
    29 https://doi.org/10.1016/j.mri.2008.05.015
    30 https://doi.org/10.1016/j.mri.2009.10.005
    31 https://doi.org/10.1016/s0167-8140(00)00234-6
    32 https://doi.org/10.1016/s0730-725x(01)00400-3
    33 https://doi.org/10.1097/00004728-199607000-00032
    34 https://doi.org/10.1145/383259.383266
    35 https://doi.org/10.1227/00006123-199410000-00016
    36 https://doi.org/10.1227/01.neu.0000317395.08466.e6
    37 schema:datePublished 2011-06
    38 schema:datePublishedReg 2011-06-01
    39 schema:description PURPOSE: The aim of this study was to establish a distortion correction applicable to whole-body imaging of live mice. MATERIALS AND METHODS: All magnetic resonance imaging (MRI) scans were acquired on a compact 1-T permanent magnet unit for mouse imaging using a T1-weighted, three-dimensional (3D) fast low-angle shot sequence. We assessed geometric distortion in MR images of a small 3D grid phantom and determined 3D image transformations for distortion correction. The developed distortion correction was applied to MR images of the 3D grid phantom acquired on another day, and the correction was validated. A two-dimensional (2D) grid phantom was imaged with a mouse to investigate the applicability of the distortion correction to whole-body mouse imaging. RESULTS: Obvious geometric distortion was observed in the MR images of the 3D grid phantom. The application of the developed 3D phantom-based distortion correction reduced distortion in the images of the 3D grid phantom acquired on another day. Geometric distortion was observed in the MR images of the 2D grid phantom acquired together with the mouse. The 3D phantom-based correction decreased the distortion substantially, regardless of mouse positioning. CONCLUSION: The developed distortion correction can reduce distortion in whole-body imaging of live mice and may enhance the capabilities of MRI in small animal experiments.
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree false
    43 schema:isPartOf N95c6e9367f864c1f8195b2f175a8b9be
    44 Na66eff68ffaf45c3937fd70c28ddcf88
    45 sg:journal.1095005
    46 schema:name Distortion correction in whole-body imaging of live mice using a 1-Tesla compact magnetic resonance imaging system
    47 schema:pagination 353-360
    48 schema:productId N0022b36c107f416db6330b00e5406fab
    49 N04042aaae13c4ef8b98e9dce55db01e9
    50 N1d032cf31bc04092925d186e245c0749
    51 N277ec7609e684056b56b9aab9b3ec93b
    52 N45bea53ae34b44089654a15f84e40c9a
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009783953
    54 https://doi.org/10.1007/s11604-010-0553-7
    55 schema:sdDatePublished 2019-04-11T09:54
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher Ncf107f540aee4a40949887064bb528d3
    58 schema:url https://link.springer.com/10.1007%2Fs11604-010-0553-7
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N0022b36c107f416db6330b00e5406fab schema:name nlm_unique_id
    63 schema:value 101490689
    64 rdf:type schema:PropertyValue
    65 N0276a19fa7a340509303827bcff2ae56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    66 schema:name Animals
    67 rdf:type schema:DefinedTerm
    68 N04042aaae13c4ef8b98e9dce55db01e9 schema:name readcube_id
    69 schema:value 2e9c4155632217ddb67c4771a37faa06e106c3c0c79c8eb6cf5d5b599ed3a93f
    70 rdf:type schema:PropertyValue
    71 N0f29e426edfc41a79e597b7b98cc22be rdf:first sg:person.010476276272.43
    72 rdf:rest Nfd61df5cdb5742bfa0dd33bf90171ab9
    73 N1d032cf31bc04092925d186e245c0749 schema:name dimensions_id
    74 schema:value pub.1009783953
    75 rdf:type schema:PropertyValue
    76 N277ec7609e684056b56b9aab9b3ec93b schema:name doi
    77 schema:value 10.1007/s11604-010-0553-7
    78 rdf:type schema:PropertyValue
    79 N28ad51dec8c8460cbb72b7788a6849bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Algorithms
    81 rdf:type schema:DefinedTerm
    82 N41c3bc5f32364802bb6ed7fbf17e6ca8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Magnetic Resonance Imaging
    84 rdf:type schema:DefinedTerm
    85 N44fae8f5f1684bd3bbf9d867c068720e rdf:first sg:person.011305211022.80
    86 rdf:rest N79b2bba987be4642902925ddd8b95d2b
    87 N45bea53ae34b44089654a15f84e40c9a schema:name pubmed_id
    88 schema:value 21717305
    89 rdf:type schema:PropertyValue
    90 N4eb315833a074e2cbf33de2a3a5917e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Mice
    92 rdf:type schema:DefinedTerm
    93 N62b5b6ff9b9644f6a74071492558b5ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Imaging, Three-Dimensional
    95 rdf:type schema:DefinedTerm
    96 N6447be1f376f4a2fa7a20046b079c2a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Equipment Design
    98 rdf:type schema:DefinedTerm
    99 N6e0531dc9ce84cad838850ca966fd83d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Whole Body Imaging
    101 rdf:type schema:DefinedTerm
    102 N79b2bba987be4642902925ddd8b95d2b rdf:first sg:person.01127255405.40
    103 rdf:rest N80ded2279f6744e5a776dcc7fcbc7af7
    104 N80ded2279f6744e5a776dcc7fcbc7af7 rdf:first sg:person.01152022531.08
    105 rdf:rest rdf:nil
    106 N8570d7d94e7f4efa82e9b0a4835c88a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Sensitivity and Specificity
    108 rdf:type schema:DefinedTerm
    109 N95c6e9367f864c1f8195b2f175a8b9be schema:issueNumber 5
    110 rdf:type schema:PublicationIssue
    111 Na66eff68ffaf45c3937fd70c28ddcf88 schema:volumeNumber 29
    112 rdf:type schema:PublicationVolume
    113 Nb1f16ab8bf4b480287945d6b9d63c86d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Mice, Inbred BALB C
    115 rdf:type schema:DefinedTerm
    116 Nb81f5c1c7ed440d3a66d244387c7cd85 rdf:first sg:person.01031733031.17
    117 rdf:rest N0f29e426edfc41a79e597b7b98cc22be
    118 Nbd05bf9fd3d942d19b3c821d4d83fd18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Reproducibility of Results
    120 rdf:type schema:DefinedTerm
    121 Nc401c0f896ab402db6d1094dfa1c4ddf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Magnetics
    123 rdf:type schema:DefinedTerm
    124 Nc54df1b4f9d54fa7b1ceb9f2c51be2ba rdf:first sg:person.01317275052.87
    125 rdf:rest N44fae8f5f1684bd3bbf9d867c068720e
    126 Nc75392cfb5c64f54a7b247c669310c70 schema:name MRTechnology Inc., Tsukuba, Japan
    127 rdf:type schema:Organization
    128 Ncf107f540aee4a40949887064bb528d3 schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 Ndcd9ae79d2584a799c9ca77726de2452 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Phantoms, Imaging
    132 rdf:type schema:DefinedTerm
    133 Nee61769a262440ba8a9f8c1fda7e2cad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Image Enhancement
    135 rdf:type schema:DefinedTerm
    136 Nfb80fea462814f1c93c75ef317078948 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Female
    138 rdf:type schema:DefinedTerm
    139 Nfd61df5cdb5742bfa0dd33bf90171ab9 rdf:first sg:person.0700250567.39
    140 rdf:rest Nc54df1b4f9d54fa7b1ceb9f2c51be2ba
    141 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Information and Computing Sciences
    143 rdf:type schema:DefinedTerm
    144 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Artificial Intelligence and Image Processing
    146 rdf:type schema:DefinedTerm
    147 sg:journal.1095005 schema:issn 1867-1071
    148 1867-108X
    149 schema:name Japanese Journal of Radiology
    150 rdf:type schema:Periodical
    151 sg:person.01031733031.17 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    152 schema:familyName Kiryu
    153 schema:givenName Shigeru
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031733031.17
    155 rdf:type schema:Person
    156 sg:person.010476276272.43 schema:affiliation https://www.grid.ac/institutes/grid.410786.c
    157 schema:familyName Inoue
    158 schema:givenName Yusuke
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43
    160 rdf:type schema:Person
    161 sg:person.01127255405.40 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    162 schema:familyName Watanabe
    163 schema:givenName Makoto
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127255405.40
    165 rdf:type schema:Person
    166 sg:person.011305211022.80 schema:affiliation https://www.grid.ac/institutes/grid.440902.b
    167 schema:familyName Yoshikawa
    168 schema:givenName Kohki
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011305211022.80
    170 rdf:type schema:Person
    171 sg:person.01152022531.08 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    172 schema:familyName Ohtomo
    173 schema:givenName Kuni
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152022531.08
    175 rdf:type schema:Person
    176 sg:person.01317275052.87 schema:affiliation Nc75392cfb5c64f54a7b247c669310c70
    177 schema:familyName Haishi
    178 schema:givenName Tomoyuki
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317275052.87
    180 rdf:type schema:Person
    181 sg:person.0700250567.39 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    182 schema:familyName Masutani
    183 schema:givenName Yoshitaka
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700250567.39
    185 rdf:type schema:Person
    186 sg:pub.10.1007/3-540-45787-9_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006751491
    187 https://doi.org/10.1007/3-540-45787-9_38
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/pl00002385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053693914
    190 https://doi.org/10.1007/pl00002385
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1002/(sici)1522-2586(199906)9:6<821::aid-jmri9>3.0.co;2-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037217910
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1002/jmri.20713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018770481
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1002/mrm.1910310106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027222794
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1002/mrm.20651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032772383
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1002/nbm.1135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033169705
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/0730-725x(92)90011-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1050388096
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.mri.2004.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012947566
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.mri.2004.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043778499
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.mri.2004.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049014365
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.mri.2008.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051187877
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.mri.2009.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049001440
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/s0167-8140(00)00234-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025215119
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/s0730-725x(01)00400-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021962649
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1097/00004728-199607000-00032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060189066
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1145/383259.383266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024465450
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1227/00006123-199410000-00016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064433225
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1227/01.neu.0000317395.08466.e6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051991177
    225 rdf:type schema:CreativeWork
    226 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
    227 schema:name Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
    228 Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
    229 Image Computing and Analysis Laboratory, Department of Radiology, University of Tokyo, Tokyo, Japan
    230 rdf:type schema:Organization
    231 https://www.grid.ac/institutes/grid.410786.c schema:alternateName Kitasato University
    232 schema:name Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Japan
    233 Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
    234 rdf:type schema:Organization
    235 https://www.grid.ac/institutes/grid.440902.b schema:alternateName Komazawa University
    236 schema:name Department of Radiotechnical Sciences, Faculty of Radiological Health Sciences, Komazawa University, Tokyo, Japan
    237 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...