Prediction of porosity and gas saturation for deep-buried sandstone reservoirs from seismic data using an improved rock-physics model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Yaneng Luo, Handong Huang, Morten Jakobsen, Yadi Yang, Jinwei Zhang, Yanjie Cai

ABSTRACT

In recent years, many important discoveries have been made in global deep oil and gas exploration, which indicates that deep exploration has gradually become one of the most important areas in current and future hydrocarbon exploration. However, the prediction of deep reservoirs is very challenging due to their low porosity and complex pore structure characteristics caused by the burial depth and diagenesis. Rock physics provides a link between the geologic reservoir parameters and seismic elastic properties and has evolved to become a key tool of quantitative seismic interpretation. Based on the mineral component and pore structure analysis of studied rocks, we propose an improved rock-physics model by introducing a third feldspar-related pore for deep-buried sandstone reservoirs to the traditional Xu–White model. This modelling process consists of three steps: first, rock matrix modelling using time-average equations; second, dry rock modelling using a multi-pore analytical approximation; and third, fluid-saturated rock modelling using a patchy distribution. It has been used in total porosity estimation, S-wave velocity prediction and rock-physics template establishment. The applicability of the improved rock-physics model is verified by a theoretical quartz-water model test and a real data total porosity estimation compared with the traditional Xu–White model and the density method. Then, a rock-physics template is generated by the improved rock-physics model for porosity and gas saturation prediction using seismic data. This template is carefully calibrated and validated by well-log data at both the well-log scale and seismic scale. Finally, the feasibility of the established rock-physics template for porosity and gas saturation prediction is validated by a deep-buried sandstone reservoir application in the East China Sea. More... »

PAGES

1-19

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11600-019-00274-6

DOI

http://dx.doi.org/10.1007/s11600-019-00274-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112504654


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0404", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geophysics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "China University of Petroleum, Beijing", 
          "id": "https://www.grid.ac/institutes/grid.411519.9", 
          "name": [
            "State Key Laboratory of Petroleum Resource and Prospecting, Unconventional Natural Gas Research Institute, China University of Petroleum, 102249, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Yaneng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China University of Petroleum, Beijing", 
          "id": "https://www.grid.ac/institutes/grid.411519.9", 
          "name": [
            "State Key Laboratory of Petroleum Resource and Prospecting, Unconventional Natural Gas Research Institute, China University of Petroleum, 102249, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Handong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bergen", 
          "id": "https://www.grid.ac/institutes/grid.7914.b", 
          "name": [
            "Department of Earth Science, University of Bergen, 5020, Bergen, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jakobsen", 
        "givenName": "Morten", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sinopec (China)", 
          "id": "https://www.grid.ac/institutes/grid.418531.a", 
          "name": [
            "Research Institute of Petroleum Exploration and Development, PetroChina Company Limited, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Yadi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412508.a", 
          "name": [
            "College of Earth Science and Engineering, Shandong University of Science and Technology, 266590, Qingdao, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jinwei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Gudao Oil Production Plant of Shengli Oilfield, China Petrochemical Corporation, 257231, Dongying, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Yanjie", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1365-2478.2011.00980.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002691005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1876-3804(13)60093-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005132205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb084ib13p07533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005949493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1440520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006147689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.3033212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009375446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marpetgeo.2009.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011884549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.1995.tb00126.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012281633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.1996.tb00170.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013051512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00721363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014299346", 
          "https://doi.org/10.1007/bf00721363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00721363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014299346", 
          "https://doi.org/10.1007/bf00721363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.3043796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016462583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.2985821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019790437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022656421803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024628795", 
          "https://doi.org/10.1023/a:1022656421803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12182-015-0014-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024664965", 
          "https://doi.org/10.1007/s12182-015-0014-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12182-015-0014-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024664965", 
          "https://doi.org/10.1007/s12182-015-0014-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1444059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025349669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1543206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026269450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.3463417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026821150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2478.2002.00304.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028801259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1365-2478.12043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030343659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-246x.2003.01977.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030815191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.3483770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032781169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2011.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034772040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1440450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035726080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1443207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036049695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.3494031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037235811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/93gl03131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037724890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-246x.2002.01801.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038871173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1438217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039689226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1512786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040968773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6636(85)90002-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045228565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6636(85)90002-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045228565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2012.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047249003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jappgeo.2002.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048035069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1365-2478.12193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050288336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.2842150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052469219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.energyfuels.6b01982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055087073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-2132/10/3/035008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059162163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.402518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062353807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1438908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064139969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.3064147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064142245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.3064148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064142246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2013-0226.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064143296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/04211009178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064922213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3997/1365-2397.2004017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071813292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2016-0316.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084612806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/08231614008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085666567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511626753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098672600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511600074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098708729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.earscirev.2018.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104551381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/geo2017-0642.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106713973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2018.2868831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107131849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2018.2883496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110721916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2018.2883496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110721916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2018.2883496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110721916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2018.2883496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110721916"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In recent years, many important discoveries have been made in global deep oil and gas exploration, which indicates that deep exploration has gradually become one of the most important areas in current and future hydrocarbon exploration. However, the prediction of deep reservoirs is very challenging due to their low porosity and complex pore structure characteristics caused by the burial depth and diagenesis. Rock physics provides a link between the geologic reservoir parameters and seismic elastic properties and has evolved to become a key tool of quantitative seismic interpretation. Based on the mineral component and pore structure analysis of studied rocks, we propose an improved rock-physics model by introducing a third feldspar-related pore for deep-buried sandstone reservoirs to the traditional Xu\u2013White model. This modelling process consists of three steps: first, rock matrix modelling using time-average equations; second, dry rock modelling using a multi-pore analytical approximation; and third, fluid-saturated rock modelling using a patchy distribution. It has been used in total porosity estimation, S-wave velocity prediction and rock-physics template establishment. The applicability of the improved rock-physics model is verified by a theoretical quartz-water model test and a real data total porosity estimation compared with the traditional Xu\u2013White model and the density method. Then, a rock-physics template is generated by the improved rock-physics model for porosity and gas saturation prediction using seismic data. This template is carefully calibrated and validated by well-log data at both the well-log scale and seismic scale. Finally, the feasibility of the established rock-physics template for porosity and gas saturation prediction is validated by a deep-buried sandstone reservoir application in the East China Sea.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11600-019-00274-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1139940", 
        "issn": [
          "1895-6572", 
          "1895-7455"
        ], 
        "name": "Acta Geophysica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "Prediction of porosity and gas saturation for deep-buried sandstone reservoirs from seismic data using an improved rock-physics model", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7b5908d4e8e1a48a0ade3c14745d38ed6a6c03eaeddd580c0f4949e840e4b62a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11600-019-00274-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112504654"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11600-019-00274-6", 
      "https://app.dimensions.ai/details/publication/pub.1112504654"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117117_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11600-019-00274-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11600-019-00274-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11600-019-00274-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11600-019-00274-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11600-019-00274-6'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11600-019-00274-6 schema:about anzsrc-for:04
2 anzsrc-for:0404
3 schema:author N55d35f736f804434b2b412de05599ca7
4 schema:citation sg:pub.10.1007/bf00721363
5 sg:pub.10.1007/s12182-015-0014-0
6 sg:pub.10.1023/a:1022656421803
7 https://doi.org/10.1016/0167-6636(85)90002-x
8 https://doi.org/10.1016/j.earscirev.2018.06.009
9 https://doi.org/10.1016/j.jappgeo.2002.11.004
10 https://doi.org/10.1016/j.marpetgeo.2009.08.008
11 https://doi.org/10.1016/j.petrol.2011.12.014
12 https://doi.org/10.1016/j.petrol.2012.02.001
13 https://doi.org/10.1016/s1876-3804(13)60093-2
14 https://doi.org/10.1017/cbo9780511600074
15 https://doi.org/10.1017/cbo9780511626753
16 https://doi.org/10.1021/acs.energyfuels.6b01982
17 https://doi.org/10.1029/93gl03131
18 https://doi.org/10.1029/jb084ib13p07533
19 https://doi.org/10.1046/j.1365-246x.2002.01801.x
20 https://doi.org/10.1046/j.1365-246x.2003.01977.x
21 https://doi.org/10.1046/j.1365-2478.2002.00304.x
22 https://doi.org/10.1088/1742-2132/10/3/035008
23 https://doi.org/10.1109/lgrs.2018.2868831
24 https://doi.org/10.1109/lgrs.2018.2883496
25 https://doi.org/10.1111/1365-2478.12043
26 https://doi.org/10.1111/1365-2478.12193
27 https://doi.org/10.1111/j.1365-2478.1995.tb00126.x
28 https://doi.org/10.1111/j.1365-2478.1996.tb00170.x
29 https://doi.org/10.1111/j.1365-2478.2011.00980.x
30 https://doi.org/10.1121/1.402518
31 https://doi.org/10.1190/1.1438217
32 https://doi.org/10.1190/1.1438908
33 https://doi.org/10.1190/1.1440450
34 https://doi.org/10.1190/1.1440520
35 https://doi.org/10.1190/1.1443207
36 https://doi.org/10.1190/1.1444059
37 https://doi.org/10.1190/1.1512786
38 https://doi.org/10.1190/1.1543206
39 https://doi.org/10.1190/1.2842150
40 https://doi.org/10.1190/1.2985821
41 https://doi.org/10.1190/1.3033212
42 https://doi.org/10.1190/1.3043796
43 https://doi.org/10.1190/1.3064147
44 https://doi.org/10.1190/1.3064148
45 https://doi.org/10.1190/1.3463417
46 https://doi.org/10.1190/1.3483770
47 https://doi.org/10.1190/1.3494031
48 https://doi.org/10.1190/geo2013-0226.1
49 https://doi.org/10.1190/geo2016-0316.1
50 https://doi.org/10.1190/geo2017-0642.1
51 https://doi.org/10.1306/04211009178
52 https://doi.org/10.1306/08231614008
53 https://doi.org/10.3997/1365-2397.2004017
54 schema:datePublished 2019-04
55 schema:datePublishedReg 2019-04-01
56 schema:description In recent years, many important discoveries have been made in global deep oil and gas exploration, which indicates that deep exploration has gradually become one of the most important areas in current and future hydrocarbon exploration. However, the prediction of deep reservoirs is very challenging due to their low porosity and complex pore structure characteristics caused by the burial depth and diagenesis. Rock physics provides a link between the geologic reservoir parameters and seismic elastic properties and has evolved to become a key tool of quantitative seismic interpretation. Based on the mineral component and pore structure analysis of studied rocks, we propose an improved rock-physics model by introducing a third feldspar-related pore for deep-buried sandstone reservoirs to the traditional Xu–White model. This modelling process consists of three steps: first, rock matrix modelling using time-average equations; second, dry rock modelling using a multi-pore analytical approximation; and third, fluid-saturated rock modelling using a patchy distribution. It has been used in total porosity estimation, S-wave velocity prediction and rock-physics template establishment. The applicability of the improved rock-physics model is verified by a theoretical quartz-water model test and a real data total porosity estimation compared with the traditional Xu–White model and the density method. Then, a rock-physics template is generated by the improved rock-physics model for porosity and gas saturation prediction using seismic data. This template is carefully calibrated and validated by well-log data at both the well-log scale and seismic scale. Finally, the feasibility of the established rock-physics template for porosity and gas saturation prediction is validated by a deep-buried sandstone reservoir application in the East China Sea.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree false
60 schema:isPartOf N820a8eab6c7246a487f08ffcb1a24663
61 Ndd96cb11be5945bab3ddeb014e45c93e
62 sg:journal.1139940
63 schema:name Prediction of porosity and gas saturation for deep-buried sandstone reservoirs from seismic data using an improved rock-physics model
64 schema:pagination 1-19
65 schema:productId N388212631974456eb9442282a4e5bbc3
66 N3953853fce214b2e864d4b02b420a4ff
67 Na1597edcd2a549ccb281c2d25f8f0415
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112504654
69 https://doi.org/10.1007/s11600-019-00274-6
70 schema:sdDatePublished 2019-04-11T14:19
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N1d3add15add44a7096a27a4d3d81f075
73 schema:url https://link.springer.com/10.1007%2Fs11600-019-00274-6
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N1d3add15add44a7096a27a4d3d81f075 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N25ee0c6af87e446889582468e4602c3d rdf:first N3c7e773b84014f36bbd434016190886b
80 rdf:rest Ncf064135e28940bc832384ac9fc978ec
81 N374067b2398447d6a85d32b546380d42 schema:affiliation Nf9b446a2a1864c1d9e26283cb3641abb
82 schema:familyName Cai
83 schema:givenName Yanjie
84 rdf:type schema:Person
85 N388212631974456eb9442282a4e5bbc3 schema:name dimensions_id
86 schema:value pub.1112504654
87 rdf:type schema:PropertyValue
88 N3953853fce214b2e864d4b02b420a4ff schema:name readcube_id
89 schema:value 7b5908d4e8e1a48a0ade3c14745d38ed6a6c03eaeddd580c0f4949e840e4b62a
90 rdf:type schema:PropertyValue
91 N3c7e773b84014f36bbd434016190886b schema:affiliation https://www.grid.ac/institutes/grid.411519.9
92 schema:familyName Huang
93 schema:givenName Handong
94 rdf:type schema:Person
95 N55d35f736f804434b2b412de05599ca7 rdf:first Nf258f68f52a344b2a01733daa6893db5
96 rdf:rest N25ee0c6af87e446889582468e4602c3d
97 N5b1d2bb25df7420188eae9ccedfa6422 schema:affiliation https://www.grid.ac/institutes/grid.412508.a
98 schema:familyName Zhang
99 schema:givenName Jinwei
100 rdf:type schema:Person
101 N819c49d9c9a2448a8d7414c284e2eea9 rdf:first N8c6c9d166ae6443796cd9d8fd6e8631e
102 rdf:rest Nc3360f9b83f54d168f3f65df4a871992
103 N820a8eab6c7246a487f08ffcb1a24663 schema:volumeNumber 67
104 rdf:type schema:PublicationVolume
105 N8c6c9d166ae6443796cd9d8fd6e8631e schema:affiliation https://www.grid.ac/institutes/grid.418531.a
106 schema:familyName Yang
107 schema:givenName Yadi
108 rdf:type schema:Person
109 Na1597edcd2a549ccb281c2d25f8f0415 schema:name doi
110 schema:value 10.1007/s11600-019-00274-6
111 rdf:type schema:PropertyValue
112 Nc3360f9b83f54d168f3f65df4a871992 rdf:first N5b1d2bb25df7420188eae9ccedfa6422
113 rdf:rest Nfd26874ff44f4fb6963ac2188c3b5e5d
114 Ncf064135e28940bc832384ac9fc978ec rdf:first Nded9cbb1726d474ea94975f2eaf18400
115 rdf:rest N819c49d9c9a2448a8d7414c284e2eea9
116 Ndd96cb11be5945bab3ddeb014e45c93e schema:issueNumber 2
117 rdf:type schema:PublicationIssue
118 Nded9cbb1726d474ea94975f2eaf18400 schema:affiliation https://www.grid.ac/institutes/grid.7914.b
119 schema:familyName Jakobsen
120 schema:givenName Morten
121 rdf:type schema:Person
122 Nf258f68f52a344b2a01733daa6893db5 schema:affiliation https://www.grid.ac/institutes/grid.411519.9
123 schema:familyName Luo
124 schema:givenName Yaneng
125 rdf:type schema:Person
126 Nf9b446a2a1864c1d9e26283cb3641abb schema:name Gudao Oil Production Plant of Shengli Oilfield, China Petrochemical Corporation, 257231, Dongying, Shandong, China
127 rdf:type schema:Organization
128 Nfd26874ff44f4fb6963ac2188c3b5e5d rdf:first N374067b2398447d6a85d32b546380d42
129 rdf:rest rdf:nil
130 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
131 schema:name Earth Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0404 schema:inDefinedTermSet anzsrc-for:
134 schema:name Geophysics
135 rdf:type schema:DefinedTerm
136 sg:journal.1139940 schema:issn 1895-6572
137 1895-7455
138 schema:name Acta Geophysica
139 rdf:type schema:Periodical
140 sg:pub.10.1007/bf00721363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014299346
141 https://doi.org/10.1007/bf00721363
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s12182-015-0014-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024664965
144 https://doi.org/10.1007/s12182-015-0014-0
145 rdf:type schema:CreativeWork
146 sg:pub.10.1023/a:1022656421803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024628795
147 https://doi.org/10.1023/a:1022656421803
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0167-6636(85)90002-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045228565
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.earscirev.2018.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104551381
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jappgeo.2002.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048035069
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.marpetgeo.2009.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011884549
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.petrol.2011.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034772040
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.petrol.2012.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047249003
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s1876-3804(13)60093-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005132205
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1017/cbo9780511600074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708729
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1017/cbo9780511626753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098672600
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/acs.energyfuels.6b01982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055087073
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1029/93gl03131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037724890
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1029/jb084ib13p07533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005949493
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1046/j.1365-246x.2002.01801.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038871173
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1046/j.1365-246x.2003.01977.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030815191
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1046/j.1365-2478.2002.00304.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028801259
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1088/1742-2132/10/3/035008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059162163
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/lgrs.2018.2868831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107131849
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/lgrs.2018.2883496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110721916
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1111/1365-2478.12043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030343659
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1111/1365-2478.12193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050288336
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1111/j.1365-2478.1995.tb00126.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012281633
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/j.1365-2478.1996.tb00170.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013051512
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1111/j.1365-2478.2011.00980.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002691005
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1121/1.402518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062353807
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1190/1.1438217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039689226
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1190/1.1438908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064139969
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1190/1.1440450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035726080
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1190/1.1440520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006147689
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1190/1.1443207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036049695
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1190/1.1444059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025349669
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1190/1.1512786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040968773
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1190/1.1543206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026269450
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1190/1.2842150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052469219
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1190/1.2985821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019790437
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1190/1.3033212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009375446
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1190/1.3043796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016462583
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1190/1.3064147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064142245
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1190/1.3064148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064142246
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1190/1.3463417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026821150
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1190/1.3483770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032781169
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1190/1.3494031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037235811
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1190/geo2013-0226.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064143296
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1190/geo2016-0316.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084612806
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1190/geo2017-0642.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106713973
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1306/04211009178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064922213
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1306/08231614008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085666567
240 rdf:type schema:CreativeWork
241 https://doi.org/10.3997/1365-2397.2004017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071813292
242 rdf:type schema:CreativeWork
243 https://www.grid.ac/institutes/grid.411519.9 schema:alternateName China University of Petroleum, Beijing
244 schema:name State Key Laboratory of Petroleum Resource and Prospecting, Unconventional Natural Gas Research Institute, China University of Petroleum, 102249, Beijing, China
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.412508.a schema:alternateName Shandong University of Science and Technology
247 schema:name College of Earth Science and Engineering, Shandong University of Science and Technology, 266590, Qingdao, Shandong, China
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.418531.a schema:alternateName Sinopec (China)
250 schema:name Research Institute of Petroleum Exploration and Development, PetroChina Company Limited, 100083, Beijing, China
251 rdf:type schema:Organization
252 https://www.grid.ac/institutes/grid.7914.b schema:alternateName University of Bergen
253 schema:name Department of Earth Science, University of Bergen, 5020, Bergen, Norway
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...