Seismic anisotropy of a fractured rock during CO2 injection: a feasibility study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Shib Sankar Ganguli, Prakash Kumar, V. P. Dimri

ABSTRACT

Fluid substitution plays the key role in reservoir characterization, leading to enhance understanding of the influence of fluids on seismic parameters. In general, fluid substitution tool assumes that the Earth is as an isotropic medium, which may not represent the practical field situation. Nevertheless, anisotropic fluid substitution provides important insights into the processes that control the anisotropic seismic response of a fractured rock when subjected to CO2 injection for enhanced oil recovery and its geological sequestration. Here, we examine the influence of fluid substitution in a porous yet fractured reservoir for quantitative interpretation of seismic data. This investigation involves anisotropic Gassmann’s equation and linear slip theory for fluid substitution in a transversely isotropic media with a horizontal axis of symmetry (HTI). We present a synthetic case by conceptualizing a double-layered half-space model with upper layer as shale and bottom layer as HTI sandstone, representing an Indian mature reservoir. The effects of variation in background porosity and fracture weaknesses on anisotropic (Thomsen’s) parameters, acoustic parameters including amplitude variation with angle have also been discussed. We observe that brine and oil sands to be associated with the highest elastic moduli, while CO2 sands exhibit contrasting trend. It is noteworthy that CO2 is more sensitive to fracture weakness when compared to the other reservoir fluids such as hydrocarbons and brines, as P-wave moduli (as much as 37.1%) and velocity (as high as 12.2%) reduces significantly with the increase in fracture weakness. Further, Gassmann’s assumption is validated as we noticed unchanged values in shear-wave moduli and shear-wave splitting parameter (γ) for various fluid types. More... »

PAGES

141-148

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11600-019-00246-w

DOI

http://dx.doi.org/10.1007/s11600-019-00246-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111836664


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "CSIR- National Geophysical Research Institute (NGRI), Uppal Road, 500 007, Hyderabad, India", 
            "Department of Earth Sciences, Indian Institute of Technology Kanpur, 208016, Kanpur, U.P, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganguli", 
        "givenName": "Shib Sankar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIR- National Geophysical Research Institute (NGRI), Uppal Road, 500 007, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Prakash", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIR- National Geophysical Research Institute (NGRI), Uppal Road, 500 007, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dimri", 
        "givenName": "V. P.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0020-7683(76)90044-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000151007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(76)90044-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000151007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.1995.tb00282.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003715921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.1981.tb02662.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003960581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1567211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004157769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2013.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004961747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1443748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005861814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jappgeo.2002.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007148574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jappgeo.2002.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007148574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12594-016-0490-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023401719", 
          "https://doi.org/10.1007/s12594-016-0490-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12594-016-0490-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023401719", 
          "https://doi.org/10.1007/s12594-016-0490-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.3026552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024839185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.1990.tb04478.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025839991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.1990.tb04478.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025839991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.3564954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026471670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1440551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029771418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1440450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035726080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1443207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036049695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jappgeo.2016.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038611116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014jb011246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045184286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-017-2940-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084035398", 
          "https://doi.org/10.1007/s12517-017-2940-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-017-2940-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084035398", 
          "https://doi.org/10.1007/s12517-017-2940-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-55843-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084680963", 
          "https://doi.org/10.1007/978-3-319-55843-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11600-017-0088-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091895549", 
          "https://doi.org/10.1007/s11600-017-0088-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/segam2014-0890.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098917334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jseaes.2018.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103813294"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Fluid substitution plays the key role in reservoir characterization, leading to enhance understanding of the influence of fluids on seismic parameters. In general, fluid substitution tool assumes that the Earth is as an isotropic medium, which may not represent the practical field situation. Nevertheless, anisotropic fluid substitution provides important insights into the processes that control the anisotropic seismic response of a fractured rock when subjected to CO2 injection for enhanced oil recovery and its geological sequestration. Here, we examine the influence of fluid substitution in a porous yet fractured reservoir for quantitative interpretation of seismic data. This investigation involves anisotropic Gassmann\u2019s equation and linear slip theory for fluid substitution in a transversely isotropic media with a horizontal axis of symmetry (HTI). We present a synthetic case by conceptualizing a double-layered half-space model with upper layer as shale and bottom layer as HTI sandstone, representing an Indian mature reservoir. The effects of variation in background porosity and fracture weaknesses on anisotropic (Thomsen\u2019s) parameters, acoustic parameters including amplitude variation with angle have also been discussed. We observe that brine and oil sands to be associated with the highest elastic moduli, while CO2 sands exhibit contrasting trend. It is noteworthy that CO2 is more sensitive to fracture weakness when compared to the other reservoir fluids such as hydrocarbons and brines, as P-wave moduli (as much as 37.1%) and velocity (as high as 12.2%) reduces significantly with the increase in fracture weakness. Further, Gassmann\u2019s assumption is validated as we noticed unchanged values in shear-wave moduli and shear-wave splitting parameter (\u03b3) for various fluid types.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11600-019-00246-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1139940", 
        "issn": [
          "1895-6572", 
          "1895-7455"
        ], 
        "name": "Acta Geophysica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "Seismic anisotropy of a fractured rock during CO2 injection: a feasibility study", 
    "pagination": "141-148", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6a71eab49c82642acc12a14bd76b9b76ccf20619d389c4a735152276318b7e89"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11600-019-00246-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111836664"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11600-019-00246-w", 
      "https://app.dimensions.ai/details/publication/pub.1111836664"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113664_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11600-019-00246-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11600-019-00246-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11600-019-00246-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11600-019-00246-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11600-019-00246-w'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11600-019-00246-w schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N44a23788e1f746ef8a9c89e808e91610
4 schema:citation sg:pub.10.1007/978-3-319-55843-1
5 sg:pub.10.1007/s11600-017-0088-8
6 sg:pub.10.1007/s12517-017-2940-1
7 sg:pub.10.1007/s12594-016-0490-x
8 https://doi.org/10.1002/2014jb011246
9 https://doi.org/10.1016/0020-7683(76)90044-5
10 https://doi.org/10.1016/j.apenergy.2013.10.016
11 https://doi.org/10.1016/j.jappgeo.2002.11.002
12 https://doi.org/10.1016/j.jappgeo.2016.10.007
13 https://doi.org/10.1016/j.jseaes.2018.05.005
14 https://doi.org/10.1111/j.1365-246x.1981.tb02662.x
15 https://doi.org/10.1111/j.1365-246x.1990.tb04478.x
16 https://doi.org/10.1111/j.1365-2478.1995.tb00282.x
17 https://doi.org/10.1190/1.1440450
18 https://doi.org/10.1190/1.1440551
19 https://doi.org/10.1190/1.1443207
20 https://doi.org/10.1190/1.1443748
21 https://doi.org/10.1190/1.1567211
22 https://doi.org/10.1190/1.3026552
23 https://doi.org/10.1190/1.3564954
24 https://doi.org/10.1190/segam2014-0890.1
25 schema:datePublished 2019-02
26 schema:datePublishedReg 2019-02-01
27 schema:description Fluid substitution plays the key role in reservoir characterization, leading to enhance understanding of the influence of fluids on seismic parameters. In general, fluid substitution tool assumes that the Earth is as an isotropic medium, which may not represent the practical field situation. Nevertheless, anisotropic fluid substitution provides important insights into the processes that control the anisotropic seismic response of a fractured rock when subjected to CO2 injection for enhanced oil recovery and its geological sequestration. Here, we examine the influence of fluid substitution in a porous yet fractured reservoir for quantitative interpretation of seismic data. This investigation involves anisotropic Gassmann’s equation and linear slip theory for fluid substitution in a transversely isotropic media with a horizontal axis of symmetry (HTI). We present a synthetic case by conceptualizing a double-layered half-space model with upper layer as shale and bottom layer as HTI sandstone, representing an Indian mature reservoir. The effects of variation in background porosity and fracture weaknesses on anisotropic (Thomsen’s) parameters, acoustic parameters including amplitude variation with angle have also been discussed. We observe that brine and oil sands to be associated with the highest elastic moduli, while CO2 sands exhibit contrasting trend. It is noteworthy that CO2 is more sensitive to fracture weakness when compared to the other reservoir fluids such as hydrocarbons and brines, as P-wave moduli (as much as 37.1%) and velocity (as high as 12.2%) reduces significantly with the increase in fracture weakness. Further, Gassmann’s assumption is validated as we noticed unchanged values in shear-wave moduli and shear-wave splitting parameter (γ) for various fluid types.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Nc74f7f74a1d24f469c448e2ec9d54cf3
32 Nd52a337ef1e946b4926a9ab68d734798
33 sg:journal.1139940
34 schema:name Seismic anisotropy of a fractured rock during CO2 injection: a feasibility study
35 schema:pagination 141-148
36 schema:productId N8da56522d24d414baa9f1799c4ac8c83
37 Na3c4b51a31294a75bef13c987d80078e
38 Ne8358e50b8324246b2a8f01a5e971705
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111836664
40 https://doi.org/10.1007/s11600-019-00246-w
41 schema:sdDatePublished 2019-04-11T10:35
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N0542ca9636f24b1dadcbb7047294a6a0
44 schema:url https://link.springer.com/10.1007%2Fs11600-019-00246-w
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N0542ca9636f24b1dadcbb7047294a6a0 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N18e7de0a5e1c489eb9fb682833347022 rdf:first Naf83e2f31097468ba8492db659957dc1
51 rdf:rest N52e6f53998d94395bd5da0c3998ea128
52 N3bbb74a5db5c477c8dc52dcd676da33f schema:affiliation https://www.grid.ac/institutes/grid.417965.8
53 schema:familyName Ganguli
54 schema:givenName Shib Sankar
55 rdf:type schema:Person
56 N44a23788e1f746ef8a9c89e808e91610 rdf:first N3bbb74a5db5c477c8dc52dcd676da33f
57 rdf:rest N18e7de0a5e1c489eb9fb682833347022
58 N4f3f24efe7334340816559cf6ae8815d schema:name CSIR- National Geophysical Research Institute (NGRI), Uppal Road, 500 007, Hyderabad, India
59 rdf:type schema:Organization
60 N52e6f53998d94395bd5da0c3998ea128 rdf:first Nd54795eee2f142b1aef987c9e37fa02a
61 rdf:rest rdf:nil
62 N8da56522d24d414baa9f1799c4ac8c83 schema:name readcube_id
63 schema:value 6a71eab49c82642acc12a14bd76b9b76ccf20619d389c4a735152276318b7e89
64 rdf:type schema:PropertyValue
65 Na3c4b51a31294a75bef13c987d80078e schema:name doi
66 schema:value 10.1007/s11600-019-00246-w
67 rdf:type schema:PropertyValue
68 Naf83e2f31097468ba8492db659957dc1 schema:affiliation N4f3f24efe7334340816559cf6ae8815d
69 schema:familyName Kumar
70 schema:givenName Prakash
71 rdf:type schema:Person
72 Nc74f7f74a1d24f469c448e2ec9d54cf3 schema:volumeNumber 67
73 rdf:type schema:PublicationVolume
74 Nd52a337ef1e946b4926a9ab68d734798 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 Nd54795eee2f142b1aef987c9e37fa02a schema:affiliation Nfb16950d5d57450a825c972ea591b073
77 schema:familyName Dimri
78 schema:givenName V. P.
79 rdf:type schema:Person
80 Ne8358e50b8324246b2a8f01a5e971705 schema:name dimensions_id
81 schema:value pub.1111836664
82 rdf:type schema:PropertyValue
83 Nfb16950d5d57450a825c972ea591b073 schema:name CSIR- National Geophysical Research Institute (NGRI), Uppal Road, 500 007, Hyderabad, India
84 rdf:type schema:Organization
85 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
86 schema:name Engineering
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
89 schema:name Resources Engineering and Extractive Metallurgy
90 rdf:type schema:DefinedTerm
91 sg:journal.1139940 schema:issn 1895-6572
92 1895-7455
93 schema:name Acta Geophysica
94 rdf:type schema:Periodical
95 sg:pub.10.1007/978-3-319-55843-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084680963
96 https://doi.org/10.1007/978-3-319-55843-1
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s11600-017-0088-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091895549
99 https://doi.org/10.1007/s11600-017-0088-8
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s12517-017-2940-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084035398
102 https://doi.org/10.1007/s12517-017-2940-1
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s12594-016-0490-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023401719
105 https://doi.org/10.1007/s12594-016-0490-x
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/2014jb011246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045184286
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0020-7683(76)90044-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000151007
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.apenergy.2013.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004961747
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.jappgeo.2002.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007148574
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.jappgeo.2016.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038611116
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.jseaes.2018.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103813294
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1111/j.1365-246x.1981.tb02662.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003960581
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1111/j.1365-246x.1990.tb04478.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025839991
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1111/j.1365-2478.1995.tb00282.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003715921
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1190/1.1440450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035726080
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1190/1.1440551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029771418
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1190/1.1443207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036049695
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1190/1.1443748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005861814
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1190/1.1567211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004157769
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1190/1.3026552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024839185
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1190/1.3564954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026471670
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1190/segam2014-0890.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098917334
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.417965.8 schema:alternateName Indian Institute of Technology Kanpur
142 schema:name CSIR- National Geophysical Research Institute (NGRI), Uppal Road, 500 007, Hyderabad, India
143 Department of Earth Sciences, Indian Institute of Technology Kanpur, 208016, Kanpur, U.P, India
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...