A stem spacing-based non-dimensional model for predicting longitudinal dispersion in low-density emergent vegetation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11-01

AUTHORS

F. Sonnenwald, V. Stovin, I. Guymer

ABSTRACT

Predicting how pollutants disperse in vegetation is necessary to protect natural watercourses. This can be done using the one-dimensional advection dispersion equation, which requires estimates of longitudinal dispersion coefficients in vegetation. Dye tracing was used to obtain longitudinal dispersion coefficients in emergent artificial vegetation of different densities and stem diameters. Based on these results, a simple non-dimensional model, depending on velocity and stem spacing, was developed to predict the longitudinal dispersion coefficient in uniform emergent vegetation at low densities (solid volume fractions < 0.1). Predictions of the longitudinal dispersion coefficient from this simple model were compared with predictions from a more complex expression for a range of experimental data, including real vegetation. The simple model was found to predict correct order of magnitude dispersion coefficients and to perform as well as the more complex expression. The simple model requires fewer parameters and provides a robust engineering approximation. More... »

PAGES

1-7

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11600-018-0217-z

DOI

http://dx.doi.org/10.1007/s11600-018-0217-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107967578


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sonnenwald", 
        "givenName": "F.", 
        "id": "sg:person.012527702061.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527702061.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stovin", 
        "givenName": "V.", 
        "id": "sg:person.01221005574.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221005574.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guymer", 
        "givenName": "I.", 
        "id": "sg:person.014533343612.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533343612.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00348-013-1509-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000953078", 
          "https://doi.org/10.1007/s00348-013-1509-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016wr019937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007973015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b13079-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017352313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00221686.2015.1090493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020980488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.2006.51.1.0218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025032819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008wr007657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031195464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007wr006290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031810442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-fluid-120710-101048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041270766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/ecss.1996.0169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049244776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1998wr900069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049541061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112003004579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053877443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008000505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053927396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008000505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053927396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00221686.2018.1494050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107301139"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-01", 
    "datePublishedReg": "2018-11-01", 
    "description": "Predicting how pollutants disperse in vegetation is necessary to protect natural watercourses. This can be done using the one-dimensional advection dispersion equation, which requires estimates of longitudinal dispersion coefficients in vegetation. Dye tracing was used to obtain longitudinal dispersion coefficients in emergent artificial vegetation of different densities and stem diameters. Based on these results, a simple non-dimensional model, depending on velocity and stem spacing, was developed to predict the longitudinal dispersion coefficient in uniform emergent vegetation at low densities (solid volume fractions < 0.1). Predictions of the longitudinal dispersion coefficient from this simple model were compared with predictions from a more complex expression for a range of experimental data, including real vegetation. The simple model was found to predict correct order of magnitude dispersion coefficients and to perform as well as the more complex expression. The simple model requires fewer parameters and provides a robust engineering approximation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11600-018-0217-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2776679", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2776038", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1139940", 
        "issn": [
          "1895-6572", 
          "1895-7455"
        ], 
        "name": "Acta Geophysica", 
        "type": "Periodical"
      }
    ], 
    "name": "A stem spacing-based non-dimensional model for predicting longitudinal dispersion in low-density emergent vegetation", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "60fc63aca67df2ad122003c26ca9cd546c44bcb1e3fa7c45a45068b8923a850e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11600-018-0217-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107967578"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11600-018-0217-z", 
      "https://app.dimensions.ai/details/publication/pub.1107967578"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000575.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11600-018-0217-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11600-018-0217-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11600-018-0217-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11600-018-0217-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11600-018-0217-z'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      37 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11600-018-0217-z schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nd76134de89474b079fb76fc2194f9849
4 schema:citation sg:pub.10.1007/s00348-013-1509-3
5 https://doi.org/10.1002/2016wr019937
6 https://doi.org/10.1006/ecss.1996.0169
7 https://doi.org/10.1017/s0022112003004579
8 https://doi.org/10.1017/s0022112008000505
9 https://doi.org/10.1029/1998wr900069
10 https://doi.org/10.1029/2007wr006290
11 https://doi.org/10.1029/2008wr007657
12 https://doi.org/10.1080/00221686.2015.1090493
13 https://doi.org/10.1080/00221686.2018.1494050
14 https://doi.org/10.1146/annurev-fluid-120710-101048
15 https://doi.org/10.1201/b13079-18
16 https://doi.org/10.4319/lo.2006.51.1.0218
17 schema:datePublished 2018-11-01
18 schema:datePublishedReg 2018-11-01
19 schema:description Predicting how pollutants disperse in vegetation is necessary to protect natural watercourses. This can be done using the one-dimensional advection dispersion equation, which requires estimates of longitudinal dispersion coefficients in vegetation. Dye tracing was used to obtain longitudinal dispersion coefficients in emergent artificial vegetation of different densities and stem diameters. Based on these results, a simple non-dimensional model, depending on velocity and stem spacing, was developed to predict the longitudinal dispersion coefficient in uniform emergent vegetation at low densities (solid volume fractions < 0.1). Predictions of the longitudinal dispersion coefficient from this simple model were compared with predictions from a more complex expression for a range of experimental data, including real vegetation. The simple model was found to predict correct order of magnitude dispersion coefficients and to perform as well as the more complex expression. The simple model requires fewer parameters and provides a robust engineering approximation.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf sg:journal.1139940
24 schema:name A stem spacing-based non-dimensional model for predicting longitudinal dispersion in low-density emergent vegetation
25 schema:pagination 1-7
26 schema:productId N2c2801e874e64fb4887d4ac0585255c4
27 N92d2643312e04c93b9c14249a0b99857
28 Nf2bbe95c4afa4d8e9135fb7b800da091
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107967578
30 https://doi.org/10.1007/s11600-018-0217-z
31 schema:sdDatePublished 2019-04-10T20:07
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N68b3ad84dc7e435589a03380f7a0d394
34 schema:url https://link.springer.com/10.1007%2Fs11600-018-0217-z
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N2c2801e874e64fb4887d4ac0585255c4 schema:name dimensions_id
39 schema:value pub.1107967578
40 rdf:type schema:PropertyValue
41 N68b3ad84dc7e435589a03380f7a0d394 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N7426c7f277e04f3a84e21d3a913a6a47 rdf:first sg:person.014533343612.09
44 rdf:rest rdf:nil
45 N780b60b7e9714e65a58c52bb0163b9b1 rdf:first sg:person.01221005574.12
46 rdf:rest N7426c7f277e04f3a84e21d3a913a6a47
47 N92d2643312e04c93b9c14249a0b99857 schema:name doi
48 schema:value 10.1007/s11600-018-0217-z
49 rdf:type schema:PropertyValue
50 Nd76134de89474b079fb76fc2194f9849 rdf:first sg:person.012527702061.46
51 rdf:rest N780b60b7e9714e65a58c52bb0163b9b1
52 Nf2bbe95c4afa4d8e9135fb7b800da091 schema:name readcube_id
53 schema:value 60fc63aca67df2ad122003c26ca9cd546c44bcb1e3fa7c45a45068b8923a850e
54 rdf:type schema:PropertyValue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
59 schema:name Statistics
60 rdf:type schema:DefinedTerm
61 sg:grant.2776038 http://pending.schema.org/fundedItem sg:pub.10.1007/s11600-018-0217-z
62 rdf:type schema:MonetaryGrant
63 sg:grant.2776679 http://pending.schema.org/fundedItem sg:pub.10.1007/s11600-018-0217-z
64 rdf:type schema:MonetaryGrant
65 sg:journal.1139940 schema:issn 1895-6572
66 1895-7455
67 schema:name Acta Geophysica
68 rdf:type schema:Periodical
69 sg:person.01221005574.12 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
70 schema:familyName Stovin
71 schema:givenName V.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221005574.12
73 rdf:type schema:Person
74 sg:person.012527702061.46 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
75 schema:familyName Sonnenwald
76 schema:givenName F.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527702061.46
78 rdf:type schema:Person
79 sg:person.014533343612.09 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
80 schema:familyName Guymer
81 schema:givenName I.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533343612.09
83 rdf:type schema:Person
84 sg:pub.10.1007/s00348-013-1509-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000953078
85 https://doi.org/10.1007/s00348-013-1509-3
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/2016wr019937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007973015
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1006/ecss.1996.0169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049244776
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1017/s0022112003004579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053877443
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1017/s0022112008000505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053927396
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1029/1998wr900069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049541061
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1029/2007wr006290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031810442
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1029/2008wr007657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031195464
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1080/00221686.2015.1090493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020980488
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1080/00221686.2018.1494050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107301139
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1146/annurev-fluid-120710-101048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041270766
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1201/b13079-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017352313
108 rdf:type schema:CreativeWork
109 https://doi.org/10.4319/lo.2006.51.1.0218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025032819
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.11835.3e schema:alternateName University of Sheffield
112 schema:name Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...