Strengthening the sequential convex MINLP technique by perspective reformulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-23

AUTHORS

Claudia D’Ambrosio, Antonio Frangioni, Claudio Gentile

ABSTRACT

The sequential convex MINLP (SC-MINLP) technique is a solution method for nonconvex mixed-integer nonlinear problems (MINLPs) where the nonconvexities are separable. It is based on solving a sequence of convex MINLPs which trade a better and better relaxation of the nonconvex part of the problem with the introduction of more and more piecewise-linear nonconvex terms, and therefore binary variables. The convex MINLPs are obtained by partitioning the domain of each separable nonconvex term in the intervals in which it is convex and those in which it is concave. In the former, the term is left in its original form, while in the latter it is piecewise-linearized. Since each interval corresponds to a semi-continuous variable, we propose to modify the convex terms using the Perspective Reformulation technique to strengthen the bounds. We show by means of experimental results on different classes of instances that doing so significantly decreases the solution time of the convex MINLPs, which is the most time consuming part of the approach, and has therefore the potential to improving the overall effectiveness of SC-MINLP. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11590-018-1360-9

DOI

http://dx.doi.org/10.1007/s11590-018-1360-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110153047


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique", 
          "id": "https://www.grid.ac/institutes/grid.10877.39", 
          "name": [
            "LIX UMR 7161, \u00c9cole Polytechnique, Route de Saclay, 91128, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Ambrosio", 
        "givenName": "Claudia", 
        "id": "sg:person.016600720017.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600720017.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Dipartimento di Informatica, Universit\u00e0 di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frangioni", 
        "givenName": "Antonio", 
        "id": "sg:person.010041327625.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010041327625.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica Antonio Ruberti", 
          "id": "https://www.grid.ac/institutes/grid.419461.f", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica \u201cAntonio Ruberti\u201d, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gentile", 
        "givenName": "Claudio", 
        "id": "sg:person.016200276033.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016200276033.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4614-1927-3_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002901762", 
          "https://doi.org/10.1007/978-1-4614-1927-3_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2013.02.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006917329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04128-0_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007696232", 
          "https://doi.org/10.1007/978-3-642-04128-0_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-005-0594-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044665126", 
          "https://doi.org/10.1007/s10107-005-0594-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-005-0594-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044665126", 
          "https://doi.org/10.1007/s10107-005-0594-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-015-9787-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052244467", 
          "https://doi.org/10.1007/s10589-015-9787-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1110.0930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.2014.1293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064727996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orl.2017.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091210793"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-23", 
    "datePublishedReg": "2018-11-23", 
    "description": "The sequential convex MINLP (SC-MINLP) technique is a solution method for nonconvex mixed-integer nonlinear problems (MINLPs) where the nonconvexities are separable. It is based on solving a sequence of convex MINLPs which trade a better and better relaxation of the nonconvex part of the problem with the introduction of more and more piecewise-linear nonconvex terms, and therefore binary variables. The convex MINLPs are obtained by partitioning the domain of each separable nonconvex term in the intervals in which it is convex and those in which it is concave. In the former, the term is left in its original form, while in the latter it is piecewise-linearized. Since each interval corresponds to a semi-continuous variable, we propose to modify the convex terms using the Perspective Reformulation technique to strengthen the bounds. We show by means of experimental results on different classes of instances that doing so significantly decreases the solution time of the convex MINLPs, which is the most time consuming part of the approach, and has therefore the potential to improving the overall effectiveness of SC-MINLP.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11590-018-1360-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7031548", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6853941", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052645", 
        "issn": [
          "1862-4472", 
          "1862-4480"
        ], 
        "name": "Optimization Letters", 
        "type": "Periodical"
      }
    ], 
    "name": "Strengthening the sequential convex MINLP technique by perspective reformulations", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6729d79ea1ae34b1b39e7f9aeea2b0b685c7883139cc76a9ec29ca02d43365b6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11590-018-1360-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110153047"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11590-018-1360-9", 
      "https://app.dimensions.ai/details/publication/pub.1110153047"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000271_0000000271/records_76797_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11590-018-1360-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11590-018-1360-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11590-018-1360-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11590-018-1360-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11590-018-1360-9'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      32 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11590-018-1360-9 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N0eac18d653f44db889aeb6bd8df10e6d
4 schema:citation sg:pub.10.1007/978-1-4614-1927-3_11
5 sg:pub.10.1007/978-3-642-04128-0_10
6 sg:pub.10.1007/s10107-005-0594-3
7 sg:pub.10.1007/s10589-015-9787-8
8 https://doi.org/10.1016/j.ejor.2013.02.038
9 https://doi.org/10.1016/j.orl.2017.08.001
10 https://doi.org/10.1287/opre.1110.0930
11 https://doi.org/10.1287/opre.2014.1293
12 schema:datePublished 2018-11-23
13 schema:datePublishedReg 2018-11-23
14 schema:description The sequential convex MINLP (SC-MINLP) technique is a solution method for nonconvex mixed-integer nonlinear problems (MINLPs) where the nonconvexities are separable. It is based on solving a sequence of convex MINLPs which trade a better and better relaxation of the nonconvex part of the problem with the introduction of more and more piecewise-linear nonconvex terms, and therefore binary variables. The convex MINLPs are obtained by partitioning the domain of each separable nonconvex term in the intervals in which it is convex and those in which it is concave. In the former, the term is left in its original form, while in the latter it is piecewise-linearized. Since each interval corresponds to a semi-continuous variable, we propose to modify the convex terms using the Perspective Reformulation technique to strengthen the bounds. We show by means of experimental results on different classes of instances that doing so significantly decreases the solution time of the convex MINLPs, which is the most time consuming part of the approach, and has therefore the potential to improving the overall effectiveness of SC-MINLP.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf sg:journal.1052645
19 schema:name Strengthening the sequential convex MINLP technique by perspective reformulations
20 schema:pagination 1-12
21 schema:productId N41b07d6334274f139932cb8685c05360
22 Na40a4675cab84b02b8470fa04d05ff82
23 Nac2df7e834c141f684a5ce3f6c283097
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110153047
25 https://doi.org/10.1007/s11590-018-1360-9
26 schema:sdDatePublished 2019-04-11T08:12
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nea1342b0f14643dba11f24567388a888
29 schema:url https://link.springer.com/10.1007%2Fs11590-018-1360-9
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N0eac18d653f44db889aeb6bd8df10e6d rdf:first sg:person.016600720017.08
34 rdf:rest Na4fc7342016c4d2da2b137bfb09cdbd3
35 N41b07d6334274f139932cb8685c05360 schema:name dimensions_id
36 schema:value pub.1110153047
37 rdf:type schema:PropertyValue
38 Na40a4675cab84b02b8470fa04d05ff82 schema:name readcube_id
39 schema:value 6729d79ea1ae34b1b39e7f9aeea2b0b685c7883139cc76a9ec29ca02d43365b6
40 rdf:type schema:PropertyValue
41 Na4fc7342016c4d2da2b137bfb09cdbd3 rdf:first sg:person.010041327625.69
42 rdf:rest Nfac003d671da4a7f9f96871acfa2d5fb
43 Nac2df7e834c141f684a5ce3f6c283097 schema:name doi
44 schema:value 10.1007/s11590-018-1360-9
45 rdf:type schema:PropertyValue
46 Nea1342b0f14643dba11f24567388a888 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nfac003d671da4a7f9f96871acfa2d5fb rdf:first sg:person.016200276033.34
49 rdf:rest rdf:nil
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
54 schema:name Numerical and Computational Mathematics
55 rdf:type schema:DefinedTerm
56 sg:grant.6853941 http://pending.schema.org/fundedItem sg:pub.10.1007/s11590-018-1360-9
57 rdf:type schema:MonetaryGrant
58 sg:grant.7031548 http://pending.schema.org/fundedItem sg:pub.10.1007/s11590-018-1360-9
59 rdf:type schema:MonetaryGrant
60 sg:journal.1052645 schema:issn 1862-4472
61 1862-4480
62 schema:name Optimization Letters
63 rdf:type schema:Periodical
64 sg:person.010041327625.69 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
65 schema:familyName Frangioni
66 schema:givenName Antonio
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010041327625.69
68 rdf:type schema:Person
69 sg:person.016200276033.34 schema:affiliation https://www.grid.ac/institutes/grid.419461.f
70 schema:familyName Gentile
71 schema:givenName Claudio
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016200276033.34
73 rdf:type schema:Person
74 sg:person.016600720017.08 schema:affiliation https://www.grid.ac/institutes/grid.10877.39
75 schema:familyName D’Ambrosio
76 schema:givenName Claudia
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600720017.08
78 rdf:type schema:Person
79 sg:pub.10.1007/978-1-4614-1927-3_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002901762
80 https://doi.org/10.1007/978-1-4614-1927-3_11
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/978-3-642-04128-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007696232
83 https://doi.org/10.1007/978-3-642-04128-0_10
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s10107-005-0594-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044665126
86 https://doi.org/10.1007/s10107-005-0594-3
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s10589-015-9787-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052244467
89 https://doi.org/10.1007/s10589-015-9787-8
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.ejor.2013.02.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006917329
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.orl.2017.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091210793
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1287/opre.1110.0930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726486
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1287/opre.2014.1293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064727996
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.10877.39 schema:alternateName École Polytechnique
100 schema:name LIX UMR 7161, École Polytechnique, Route de Saclay, 91128, Palaiseau, France
101 rdf:type schema:Organization
102 https://www.grid.ac/institutes/grid.419461.f schema:alternateName Istituto di Analisi dei Sistemi ed Informatica Antonio Ruberti
103 schema:name Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185, Rome, Italy
104 rdf:type schema:Organization
105 https://www.grid.ac/institutes/grid.5395.a schema:alternateName University of Pisa
106 schema:name Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...