On the adaptation of the mutation scale factor in differential evolution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-01

AUTHORS

Carlos Segura, Carlos A. Coello Coello, Eduardo Segredo, Coromoto León

ABSTRACT

Differential evolution (DE) is a simple yet effective metaheuristic specially suited for real-parameter optimization. The most advanced DE variants take into account the feedback obtained in the self-optimization process to modify their internal parameters and components dynamically. In recent years, some controversies have arisen regarding the adaptive schemes that incorporate feedback from the search process to guide the adaptation of the mutation scale factor. Some researchers have claimed that no significant benefits are obtained with these kinds of schemes. However, other studies have shown that they are highly effective. In this paper, we show that there is a relationship between the effectiveness of these adaptive schemes and the balance between exploration and exploitation induced by the trial vector generation strategy considered. State-of-the-art adaptive schemes are not useful for the trial vector generation strategies with the highest levels of exploration, which in fact seems to be the reason behind the controversies of recent years. More... »

PAGES

189-198

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11590-014-0723-0

DOI

http://dx.doi.org/10.1007/s11590-014-0723-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033783251


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Departamento de Computaci\u00f3n, CINVESTAV-IPN, UMI LAFMIA 3175 CNRS, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07300, M\u00e9xico, DF, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Segura", 
        "givenName": "Carlos", 
        "id": "sg:person.016456006606.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016456006606.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Departamento de Computaci\u00f3n (Evolutionary Computation Group), CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07300, M\u00e9xico, DF, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coello Coello", 
        "givenName": "Carlos A.", 
        "id": "sg:person.012160505340.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of La Laguna", 
          "id": "https://www.grid.ac/institutes/grid.10041.34", 
          "name": [
            "Dpto. Estad\u00edstica, I.O. y Computaci\u00f3n, Astrof\u00edsico Fco. S\u00e1nchez, Edif. Matem\u00e1ticas, Universidad de La Laguna, 38271, Santa Cruz de Tenerife, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Segredo", 
        "givenName": "Eduardo", 
        "id": "sg:person.012115677345.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012115677345.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of La Laguna", 
          "id": "https://www.grid.ac/institutes/grid.10041.34", 
          "name": [
            "Dpto. Estad\u00edstica, I.O. y Computaci\u00f3n, Astrof\u00edsico Fco. S\u00e1nchez, Edif. Matem\u00e1ticas, Universidad de La Laguna, 38271, Santa Cruz de Tenerife, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le\u00f3n", 
        "givenName": "Coromoto", 
        "id": "sg:person.016277524101.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016277524101.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10462-009-9137-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009535966", 
          "https://doi.org/10.1007/s10462-009-9137-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10462-009-9137-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009535966", 
          "https://doi.org/10.1007/s10462-009-9137-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10462-009-9137-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009535966", 
          "https://doi.org/10.1007/s10462-009-9137-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-010-0646-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011972266", 
          "https://doi.org/10.1007/s00500-010-0646-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-30504-7_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031869221", 
          "https://doi.org/10.1007/978-3-642-30504-7_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87700-4_64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047441751", 
          "https://doi.org/10.1007/978-3-540-87700-4_64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87700-4_64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047441751", 
          "https://doi.org/10.1007/978-3-540-87700-4_64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2010.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048166255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-010-0639-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050723192", 
          "https://doi.org/10.1007/s00500-010-0639-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-30504-7_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050850482", 
          "https://doi.org/10.1007/978-3-642-30504-7_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1143997.1144086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051623655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2006.872133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2008.927706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2009.2014613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2010.2059031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2010.2087271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2006.1688533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093342058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2007.4424833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093931706"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-01", 
    "datePublishedReg": "2015-01-01", 
    "description": "Differential evolution (DE) is a simple yet effective metaheuristic specially suited for real-parameter optimization. The most advanced DE variants take into account the feedback obtained in the self-optimization process to modify their internal parameters and components dynamically. In recent years, some controversies have arisen regarding the adaptive schemes that incorporate feedback from the search process to guide the adaptation of the mutation scale factor. Some researchers have claimed that no significant benefits are obtained with these kinds of schemes. However, other studies have shown that they are highly effective. In this paper, we show that there is a relationship between the effectiveness of these adaptive schemes and the balance between exploration and exploitation induced by the trial vector generation strategy considered. State-of-the-art adaptive schemes are not useful for the trial vector generation strategies with the highest levels of exploration, which in fact seems to be the reason behind the controversies of recent years.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11590-014-0723-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3770995", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052645", 
        "issn": [
          "1862-4472", 
          "1862-4480"
        ], 
        "name": "Optimization Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "On the adaptation of the mutation scale factor in differential evolution", 
    "pagination": "189-198", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a0ee79a4fcb7c27c5a1fada2ec026d6e0323dedc3918c00dba037d7074432718"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11590-014-0723-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033783251"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11590-014-0723-0", 
      "https://app.dimensions.ai/details/publication/pub.1033783251"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11590-014-0723-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11590-014-0723-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11590-014-0723-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11590-014-0723-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11590-014-0723-0'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11590-014-0723-0 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nf4e12eff679f48878579975eecfc8a13
4 schema:citation sg:pub.10.1007/978-3-540-87700-4_64
5 sg:pub.10.1007/978-3-642-30504-7_17
6 sg:pub.10.1007/978-3-642-30504-7_8
7 sg:pub.10.1007/s00500-010-0639-2
8 sg:pub.10.1007/s00500-010-0646-3
9 sg:pub.10.1007/s10462-009-9137-2
10 sg:pub.10.1023/a:1008202821328
11 https://doi.org/10.1016/j.asoc.2010.04.024
12 https://doi.org/10.1109/cec.2006.1688533
13 https://doi.org/10.1109/cec.2007.4424833
14 https://doi.org/10.1109/tevc.2006.872133
15 https://doi.org/10.1109/tevc.2008.927706
16 https://doi.org/10.1109/tevc.2009.2014613
17 https://doi.org/10.1109/tevc.2010.2059031
18 https://doi.org/10.1109/tevc.2010.2087271
19 https://doi.org/10.1145/1143997.1144086
20 schema:datePublished 2015-01
21 schema:datePublishedReg 2015-01-01
22 schema:description Differential evolution (DE) is a simple yet effective metaheuristic specially suited for real-parameter optimization. The most advanced DE variants take into account the feedback obtained in the self-optimization process to modify their internal parameters and components dynamically. In recent years, some controversies have arisen regarding the adaptive schemes that incorporate feedback from the search process to guide the adaptation of the mutation scale factor. Some researchers have claimed that no significant benefits are obtained with these kinds of schemes. However, other studies have shown that they are highly effective. In this paper, we show that there is a relationship between the effectiveness of these adaptive schemes and the balance between exploration and exploitation induced by the trial vector generation strategy considered. State-of-the-art adaptive schemes are not useful for the trial vector generation strategies with the highest levels of exploration, which in fact seems to be the reason behind the controversies of recent years.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N162c23e24db7462eae3887fd239f7076
27 N936b575cea6f44d8abadbf0c83027c15
28 sg:journal.1052645
29 schema:name On the adaptation of the mutation scale factor in differential evolution
30 schema:pagination 189-198
31 schema:productId N00ce241a4e474059b4c88ffce50643da
32 N85a10247ba1944418480628e70424d7c
33 N9e3264bd01544107904e14b8519274f8
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033783251
35 https://doi.org/10.1007/s11590-014-0723-0
36 schema:sdDatePublished 2019-04-10T19:11
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Na41c172270e34c4385e99ca36f839b4b
39 schema:url http://link.springer.com/10.1007%2Fs11590-014-0723-0
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N00ce241a4e474059b4c88ffce50643da schema:name dimensions_id
44 schema:value pub.1033783251
45 rdf:type schema:PropertyValue
46 N162c23e24db7462eae3887fd239f7076 schema:issueNumber 1
47 rdf:type schema:PublicationIssue
48 N3c28d30dd042432f95e0302565c61a93 rdf:first sg:person.012160505340.13
49 rdf:rest Nb9b281d1098f49f8bddb1d127c219cbc
50 N642478ae71054be2afd8496b5650f369 rdf:first sg:person.016277524101.47
51 rdf:rest rdf:nil
52 N85a10247ba1944418480628e70424d7c schema:name doi
53 schema:value 10.1007/s11590-014-0723-0
54 rdf:type schema:PropertyValue
55 N936b575cea6f44d8abadbf0c83027c15 schema:volumeNumber 9
56 rdf:type schema:PublicationVolume
57 N9e3264bd01544107904e14b8519274f8 schema:name readcube_id
58 schema:value a0ee79a4fcb7c27c5a1fada2ec026d6e0323dedc3918c00dba037d7074432718
59 rdf:type schema:PropertyValue
60 Na41c172270e34c4385e99ca36f839b4b schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nb9b281d1098f49f8bddb1d127c219cbc rdf:first sg:person.012115677345.92
63 rdf:rest N642478ae71054be2afd8496b5650f369
64 Nf4e12eff679f48878579975eecfc8a13 rdf:first sg:person.016456006606.19
65 rdf:rest N3c28d30dd042432f95e0302565c61a93
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
70 schema:name Applied Mathematics
71 rdf:type schema:DefinedTerm
72 sg:grant.3770995 http://pending.schema.org/fundedItem sg:pub.10.1007/s11590-014-0723-0
73 rdf:type schema:MonetaryGrant
74 sg:journal.1052645 schema:issn 1862-4472
75 1862-4480
76 schema:name Optimization Letters
77 rdf:type schema:Periodical
78 sg:person.012115677345.92 schema:affiliation https://www.grid.ac/institutes/grid.10041.34
79 schema:familyName Segredo
80 schema:givenName Eduardo
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012115677345.92
82 rdf:type schema:Person
83 sg:person.012160505340.13 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
84 schema:familyName Coello Coello
85 schema:givenName Carlos A.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13
87 rdf:type schema:Person
88 sg:person.016277524101.47 schema:affiliation https://www.grid.ac/institutes/grid.10041.34
89 schema:familyName León
90 schema:givenName Coromoto
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016277524101.47
92 rdf:type schema:Person
93 sg:person.016456006606.19 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
94 schema:familyName Segura
95 schema:givenName Carlos
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016456006606.19
97 rdf:type schema:Person
98 sg:pub.10.1007/978-3-540-87700-4_64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047441751
99 https://doi.org/10.1007/978-3-540-87700-4_64
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-642-30504-7_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031869221
102 https://doi.org/10.1007/978-3-642-30504-7_17
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-642-30504-7_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050850482
105 https://doi.org/10.1007/978-3-642-30504-7_8
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00500-010-0639-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050723192
108 https://doi.org/10.1007/s00500-010-0639-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00500-010-0646-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011972266
111 https://doi.org/10.1007/s00500-010-0646-3
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10462-009-9137-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009535966
114 https://doi.org/10.1007/s10462-009-9137-2
115 rdf:type schema:CreativeWork
116 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
117 https://doi.org/10.1023/a:1008202821328
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.asoc.2010.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048166255
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/cec.2006.1688533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093342058
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/cec.2007.4424833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093931706
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tevc.2006.872133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604743
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tevc.2008.927706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604895
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/tevc.2009.2014613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604907
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/tevc.2010.2059031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605002
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tevc.2010.2087271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605021
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/1143997.1144086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051623655
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.10041.34 schema:alternateName University of La Laguna
138 schema:name Dpto. Estadística, I.O. y Computación, Astrofísico Fco. Sánchez, Edif. Matemáticas, Universidad de La Laguna, 38271, Santa Cruz de Tenerife, Spain
139 rdf:type schema:Organization
140 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
141 schema:name Departamento de Computación (Evolutionary Computation Group), CINVESTAV-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07300, México, DF, México
142 Departamento de Computación, CINVESTAV-IPN, UMI LAFMIA 3175 CNRS, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07300, México, DF, México
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...