Hopf bifurcations in dynamical systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-29

AUTHORS

Salvatore Rionero

ABSTRACT

The onset of instability in autonomous dynamical systems (ADS) of ordinary differential equations is investigated. Binary, ternary and quaternary ADS are taken into account. The stability frontier of the spectrum is analyzed. Conditions necessary and sufficient for the occurring of Hopf, Hopf–Steady, Double-Hopf and unsteady aperiodic bifurcations—in closed form—and conditions guaranteeing the absence of unsteady bifurcations via symmetrizability, are obtained. The continuous triopoly Cournot game of mathematical economy is taken into account and it is shown that the ternary ADS governing the Nash equilibrium stability, is symmetrizable. The onset of Hopf bifurcations in rotatory thermal hydrodynamics is studied and the Hopf bifurcation number (threshold that the Taylor number crosses at the onset of Hopf bifurcations) is obtained. More... »

PAGES

1-30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11587-019-00440-4

DOI

http://dx.doi.org/10.1007/s11587-019-00440-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113103952


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Department of Mathematics and Applications \u201cR. Caccioppoli\u201d, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinzia, 80126, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rionero", 
        "givenName": "Salvatore", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijnonlinmec.2015.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023556856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11587-016-0258-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029024174", 
          "https://doi.org/10.1007/s11587-016-0258-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1049529965", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1049529965", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-017-0868-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085409688", 
          "https://doi.org/10.1007/s11242-017-0868-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-017-0868-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085409688", 
          "https://doi.org/10.1007/s11242-017-0868-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-29", 
    "datePublishedReg": "2019-03-29", 
    "description": "The onset of instability in autonomous dynamical systems (ADS) of ordinary differential equations is investigated. Binary, ternary and quaternary ADS are taken into account. The stability frontier of the spectrum is analyzed. Conditions necessary and sufficient for the occurring of Hopf, Hopf\u2013Steady, Double-Hopf and unsteady aperiodic bifurcations\u2014in closed form\u2014and conditions guaranteeing the absence of unsteady bifurcations via symmetrizability, are obtained. The continuous triopoly Cournot game of mathematical economy is taken into account and it is shown that the ternary ADS governing the Nash equilibrium stability, is symmetrizable. The onset of Hopf bifurcations in rotatory thermal hydrodynamics is studied and the Hopf bifurcation number (threshold that the Taylor number crosses at the onset of Hopf bifurcations) is obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11587-019-00440-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136342", 
        "issn": [
          "0035-5038", 
          "1827-3491"
        ], 
        "name": "Ricerche di Matematica", 
        "type": "Periodical"
      }
    ], 
    "name": "Hopf bifurcations in dynamical systems", 
    "pagination": "1-30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "863119a5646ddc245b53941db174feb0ec7bca2cfdce20e882fa3f453dd87244"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11587-019-00440-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113103952"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11587-019-00440-4", 
      "https://app.dimensions.ai/details/publication/pub.1113103952"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68973_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11587-019-00440-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11587-019-00440-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11587-019-00440-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11587-019-00440-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11587-019-00440-4'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      28 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11587-019-00440-4 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N198e0aa3482f4ac0b33b68d7821e0567
4 schema:citation sg:pub.10.1007/s11242-017-0868-2
5 sg:pub.10.1007/s11587-016-0258-z
6 https://app.dimensions.ai/details/publication/pub.1049529965
7 https://doi.org/10.1016/j.ijnonlinmec.2015.10.011
8 schema:datePublished 2019-03-29
9 schema:datePublishedReg 2019-03-29
10 schema:description The onset of instability in autonomous dynamical systems (ADS) of ordinary differential equations is investigated. Binary, ternary and quaternary ADS are taken into account. The stability frontier of the spectrum is analyzed. Conditions necessary and sufficient for the occurring of Hopf, Hopf–Steady, Double-Hopf and unsteady aperiodic bifurcations—in closed form—and conditions guaranteeing the absence of unsteady bifurcations via symmetrizability, are obtained. The continuous triopoly Cournot game of mathematical economy is taken into account and it is shown that the ternary ADS governing the Nash equilibrium stability, is symmetrizable. The onset of Hopf bifurcations in rotatory thermal hydrodynamics is studied and the Hopf bifurcation number (threshold that the Taylor number crosses at the onset of Hopf bifurcations) is obtained.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf sg:journal.1136342
15 schema:name Hopf bifurcations in dynamical systems
16 schema:pagination 1-30
17 schema:productId N4cfd5c12a4b249258b804686381f2437
18 N7e91c240ebb041ce989c7dd73d5614af
19 Nd90e38e180c84a4abc70a4db5f818e3a
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113103952
21 https://doi.org/10.1007/s11587-019-00440-4
22 schema:sdDatePublished 2019-04-11T13:25
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N3fc7ed9e7a854b5a954e4c5728358cdb
25 schema:url https://link.springer.com/10.1007%2Fs11587-019-00440-4
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N198e0aa3482f4ac0b33b68d7821e0567 rdf:first N5ff0ef5d89814663b6d22e8ebd4ee92b
30 rdf:rest rdf:nil
31 N3fc7ed9e7a854b5a954e4c5728358cdb schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N4cfd5c12a4b249258b804686381f2437 schema:name doi
34 schema:value 10.1007/s11587-019-00440-4
35 rdf:type schema:PropertyValue
36 N5ff0ef5d89814663b6d22e8ebd4ee92b schema:affiliation https://www.grid.ac/institutes/grid.4691.a
37 schema:familyName Rionero
38 schema:givenName Salvatore
39 rdf:type schema:Person
40 N7e91c240ebb041ce989c7dd73d5614af schema:name dimensions_id
41 schema:value pub.1113103952
42 rdf:type schema:PropertyValue
43 Nd90e38e180c84a4abc70a4db5f818e3a schema:name readcube_id
44 schema:value 863119a5646ddc245b53941db174feb0ec7bca2cfdce20e882fa3f453dd87244
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
50 schema:name Applied Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1136342 schema:issn 0035-5038
53 1827-3491
54 schema:name Ricerche di Matematica
55 rdf:type schema:Periodical
56 sg:pub.10.1007/s11242-017-0868-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085409688
57 https://doi.org/10.1007/s11242-017-0868-2
58 rdf:type schema:CreativeWork
59 sg:pub.10.1007/s11587-016-0258-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029024174
60 https://doi.org/10.1007/s11587-016-0258-z
61 rdf:type schema:CreativeWork
62 https://app.dimensions.ai/details/publication/pub.1049529965 schema:CreativeWork
63 https://doi.org/10.1016/j.ijnonlinmec.2015.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023556856
64 rdf:type schema:CreativeWork
65 https://www.grid.ac/institutes/grid.4691.a schema:alternateName University of Naples Federico II
66 schema:name Department of Mathematics and Applications “R. Caccioppoli”, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinzia, 80126, Naples, Italy
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...