Ground state solutions for a class of fractional Hamiltonian systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-07

AUTHORS

Abderrazek Benhassine

ABSTRACT

In this paper we study the following fractional Hamiltonian systems -tD∞α(-∞Dtαx(t))-L(t).x(t)+∇W(t,x(t))=0,x∈Hα(R,RN),where α∈12,1,t∈R,x∈RN,-∞Dtα and tD∞α are the left and right Liouville–Weyl fractional derivatives of order α on the whole axis R respectively, L:R⟶R2N and W:R×RN⟶R are suitable functions. One ground state solution is obtained by applying the monotonicity trick of Jeanjean and the concentration-compactness principle in the case where the matrix L(t) is positive definite and W∈C1(R×RN,R) is superquadratic but does not satisfy the usual Ambrosetti–Rabinowitz condition. More... »

PAGES

1-17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11587-019-00437-z

DOI

http://dx.doi.org/10.1007/s11587-019-00437-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112609466


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Monastir", 
          "id": "https://www.grid.ac/institutes/grid.411838.7", 
          "name": [
            "Department of Mathematics, Higher Institute of Informatics and Mathematics of Monastir, University of Monastir, 5019, Monastir, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benhassine", 
        "givenName": "Abderrazek", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.na.2010.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005978498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0362-546x(94)00229-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008556727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1596-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009327282", 
          "https://doi.org/10.1007/978-1-4612-1596-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1596-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009327282", 
          "https://doi.org/10.1007/978-1-4612-1596-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1010794702", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2061-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010794702", 
          "https://doi.org/10.1007/978-1-4757-2061-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2061-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010794702", 
          "https://doi.org/10.1007/978-1-4757-2061-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2005.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011717347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2005.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011717347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-016-2713-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013964055", 
          "https://doi.org/10.1007/s00220-016-2713-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-016-2713-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013964055", 
          "https://doi.org/10.1007/s00220-016-2713-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13661-015-0406-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018947230", 
          "https://doi.org/10.1186/s13661-015-0406-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13661-015-0406-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018947230", 
          "https://doi.org/10.1186/s13661-015-0406-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02571356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020294129", 
          "https://doi.org/10.1007/bf02571356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02571356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020294129", 
          "https://doi.org/10.1007/bf02571356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0252-9602(13)60050-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021452141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4146-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022709270", 
          "https://doi.org/10.1007/978-1-4612-4146-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4146-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022709270", 
          "https://doi.org/10.1007/978-1-4612-4146-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2011.12.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023256799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2010.12.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027111563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(73)90051-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032792397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1034253103", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-28739-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034253103", 
          "https://doi.org/10.1007/978-3-319-28739-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-28739-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034253103", 
          "https://doi.org/10.1007/978-3-319-28739-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.1998.6184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037411226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-0208(06)80001-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038845055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002290170032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040987594", 
          "https://doi.org/10.1007/s002290170032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2005.02.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049973518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210500013147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054893031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/28/6/1937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127412500861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062956494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/fca-2015-0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067531667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/fca-2015-0053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067531690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcds.2013.33.2105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071734657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0294-1449(16)30422-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084044649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-017-0930-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085209103", 
          "https://doi.org/10.1007/s00009-017-0930-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00009-017-0930-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085209103", 
          "https://doi.org/10.1007/s00009-017-0930-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098722172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1099011931", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/dema-2000-0315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100306423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0040577918040086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103829137", 
          "https://doi.org/10.1134/s0040577918040086"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-07", 
    "datePublishedReg": "2019-03-07", 
    "description": "In this paper we study the following fractional Hamiltonian systems -tD\u221e\u03b1(-\u221eDt\u03b1x(t))-L(t).x(t)+\u2207W(t,x(t))=0,x\u2208H\u03b1(R,RN),where \u03b1\u220812,1,t\u2208R,x\u2208RN,-\u221eDt\u03b1 and tD\u221e\u03b1 are the left and right Liouville\u2013Weyl fractional derivatives of order \u03b1 on the whole axis R respectively, L:R\u27f6R2N and W:R\u00d7RN\u27f6R are suitable functions. One ground state solution is obtained by applying the monotonicity trick of Jeanjean and the concentration-compactness principle in the case where the matrix L(t) is positive definite and W\u2208C1(R\u00d7RN,R) is superquadratic but does not satisfy the usual Ambrosetti\u2013Rabinowitz condition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11587-019-00437-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136342", 
        "issn": [
          "0035-5038", 
          "1827-3491"
        ], 
        "name": "Ricerche di Matematica", 
        "type": "Periodical"
      }
    ], 
    "name": "Ground state solutions for a class of fractional Hamiltonian systems", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a087b2381ce47300916768f9721bc2324f414626505ebe377e640fff0006434d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11587-019-00437-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112609466"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11587-019-00437-z", 
      "https://app.dimensions.ai/details/publication/pub.1112609466"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11692_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11587-019-00437-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11587-019-00437-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11587-019-00437-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11587-019-00437-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11587-019-00437-z'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      56 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11587-019-00437-z schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N35858a4631244ecda5207227cd305b0f
4 schema:citation sg:pub.10.1007/978-1-4612-1596-7
5 sg:pub.10.1007/978-1-4612-4146-1
6 sg:pub.10.1007/978-1-4757-2061-7
7 sg:pub.10.1007/978-3-319-28739-3
8 sg:pub.10.1007/bf02571356
9 sg:pub.10.1007/s00009-017-0930-x
10 sg:pub.10.1007/s00220-016-2713-9
11 sg:pub.10.1007/s002290170032
12 sg:pub.10.1134/s0040577918040086
13 sg:pub.10.1186/s13661-015-0406-5
14 https://app.dimensions.ai/details/publication/pub.1010794702
15 https://app.dimensions.ai/details/publication/pub.1034253103
16 https://app.dimensions.ai/details/publication/pub.1099011931
17 https://doi.org/10.1006/jmaa.1998.6184
18 https://doi.org/10.1016/0022-1236(73)90051-7
19 https://doi.org/10.1016/0362-546x(94)00229-b
20 https://doi.org/10.1016/j.camwa.2010.12.071
21 https://doi.org/10.1016/j.jde.2005.06.029
22 https://doi.org/10.1016/j.jmaa.2005.02.052
23 https://doi.org/10.1016/j.jmaa.2011.12.032
24 https://doi.org/10.1016/j.na.2010.11.005
25 https://doi.org/10.1016/s0252-9602(13)60050-8
26 https://doi.org/10.1016/s0294-1449(16)30422-x
27 https://doi.org/10.1016/s0304-0208(06)80001-0
28 https://doi.org/10.1017/s0308210500013147
29 https://doi.org/10.1088/0951-7715/28/6/1937
30 https://doi.org/10.1090/cbms/065
31 https://doi.org/10.1142/s0218127412500861
32 https://doi.org/10.1515/dema-2000-0315
33 https://doi.org/10.1515/fca-2015-0005
34 https://doi.org/10.1515/fca-2015-0053
35 https://doi.org/10.3934/dcds.2013.33.2105
36 schema:datePublished 2019-03-07
37 schema:datePublishedReg 2019-03-07
38 schema:description In this paper we study the following fractional Hamiltonian systems -tD∞α(-∞Dtαx(t))-L(t).x(t)+∇W(t,x(t))=0,x∈Hα(R,RN),where α∈12,1,t∈R,x∈RN,-∞Dtα and tD∞α are the left and right Liouville–Weyl fractional derivatives of order α on the whole axis R respectively, L:R⟶R2N and W:R×RN⟶R are suitable functions. One ground state solution is obtained by applying the monotonicity trick of Jeanjean and the concentration-compactness principle in the case where the matrix L(t) is positive definite and W∈C1(R×RN,R) is superquadratic but does not satisfy the usual Ambrosetti–Rabinowitz condition.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf sg:journal.1136342
43 schema:name Ground state solutions for a class of fractional Hamiltonian systems
44 schema:pagination 1-17
45 schema:productId N13492292f5df458ea037adc6fd6d3efb
46 N34e3937bcad045989aaef1fa1cd91091
47 Nff0843c9802c45de8963dc2a311b5e80
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112609466
49 https://doi.org/10.1007/s11587-019-00437-z
50 schema:sdDatePublished 2019-04-11T11:17
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Na730959f40a14030a1c926e8baaeb266
53 schema:url https://link.springer.com/10.1007%2Fs11587-019-00437-z
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N13492292f5df458ea037adc6fd6d3efb schema:name doi
58 schema:value 10.1007/s11587-019-00437-z
59 rdf:type schema:PropertyValue
60 N34e3937bcad045989aaef1fa1cd91091 schema:name readcube_id
61 schema:value a087b2381ce47300916768f9721bc2324f414626505ebe377e640fff0006434d
62 rdf:type schema:PropertyValue
63 N35858a4631244ecda5207227cd305b0f rdf:first N7b5bea901d0b4f77ad51a309feafd042
64 rdf:rest rdf:nil
65 N7b5bea901d0b4f77ad51a309feafd042 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
66 schema:familyName Benhassine
67 schema:givenName Abderrazek
68 rdf:type schema:Person
69 Na730959f40a14030a1c926e8baaeb266 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nff0843c9802c45de8963dc2a311b5e80 schema:name dimensions_id
72 schema:value pub.1112609466
73 rdf:type schema:PropertyValue
74 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
75 schema:name Medical and Health Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
78 schema:name Public Health and Health Services
79 rdf:type schema:DefinedTerm
80 sg:journal.1136342 schema:issn 0035-5038
81 1827-3491
82 schema:name Ricerche di Matematica
83 rdf:type schema:Periodical
84 sg:pub.10.1007/978-1-4612-1596-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009327282
85 https://doi.org/10.1007/978-1-4612-1596-7
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-1-4612-4146-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022709270
88 https://doi.org/10.1007/978-1-4612-4146-1
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-1-4757-2061-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010794702
91 https://doi.org/10.1007/978-1-4757-2061-7
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-319-28739-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034253103
94 https://doi.org/10.1007/978-3-319-28739-3
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02571356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020294129
97 https://doi.org/10.1007/bf02571356
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00009-017-0930-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085209103
100 https://doi.org/10.1007/s00009-017-0930-x
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00220-016-2713-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013964055
103 https://doi.org/10.1007/s00220-016-2713-9
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s002290170032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040987594
106 https://doi.org/10.1007/s002290170032
107 rdf:type schema:CreativeWork
108 sg:pub.10.1134/s0040577918040086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103829137
109 https://doi.org/10.1134/s0040577918040086
110 rdf:type schema:CreativeWork
111 sg:pub.10.1186/s13661-015-0406-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018947230
112 https://doi.org/10.1186/s13661-015-0406-5
113 rdf:type schema:CreativeWork
114 https://app.dimensions.ai/details/publication/pub.1010794702 schema:CreativeWork
115 https://app.dimensions.ai/details/publication/pub.1034253103 schema:CreativeWork
116 https://app.dimensions.ai/details/publication/pub.1099011931 schema:CreativeWork
117 https://doi.org/10.1006/jmaa.1998.6184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037411226
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0022-1236(73)90051-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032792397
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0362-546x(94)00229-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1008556727
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.camwa.2010.12.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027111563
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jde.2005.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011717347
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jmaa.2005.02.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049973518
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jmaa.2011.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023256799
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.na.2010.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005978498
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0252-9602(13)60050-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021452141
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0294-1449(16)30422-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084044649
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0304-0208(06)80001-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038845055
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1017/s0308210500013147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054893031
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/0951-7715/28/6/1937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110431
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1090/cbms/065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098722172
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1142/s0218127412500861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062956494
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1515/dema-2000-0315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100306423
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1515/fca-2015-0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067531667
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1515/fca-2015-0053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067531690
152 rdf:type schema:CreativeWork
153 https://doi.org/10.3934/dcds.2013.33.2105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071734657
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.411838.7 schema:alternateName University of Monastir
156 schema:name Department of Mathematics, Higher Institute of Informatics and Mathematics of Monastir, University of Monastir, 5019, Monastir, Tunisia
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...