Derivatives not first return integrable on a fractal set View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Donatella Bongiorno

ABSTRACT

We extend to s-dimensional fractal sets the notion of first return integral (Definition 5) and we prove that there are s-derivatives not s-first return integrable.

PAGES

597-604

References to SciGraph publications

  • 2004-09. Riemann-Type Definition of the Improper Integrals in CZECHOSLOVAK MATHEMATICAL JOURNAL
  • Journal

    TITLE

    Ricerche di Matematica

    ISSUE

    2

    VOLUME

    67

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11587-018-0390-z

    DOI

    http://dx.doi.org/10.1007/s11587-018-0390-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103158186


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Palermo", 
              "id": "https://www.grid.ac/institutes/grid.10776.37", 
              "name": [
                "Dipartimento Energia, Ingegneria dell\u2019Informazione e Modelli Matematici, Universit\u00e0 di Palermo, Viale delle Scienze, Ed. 9, 90128, Palermo, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bongiorno", 
            "givenName": "Donatella", 
            "id": "sg:person.016505537331.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505537331.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10587-004-6420-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005161031", 
              "https://doi.org/10.1007/s10587-004-6420-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmaa.2006.10.095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012513124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1007-5704(98)90054-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025407168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmaa.2008.05.084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032635460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218348x09004181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062974984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218348x15500085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062975209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511623813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098672683"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11", 
        "datePublishedReg": "2018-11-01", 
        "description": "We extend to s-dimensional fractal sets the notion of first return integral (Definition 5) and we prove that there are s-derivatives not s-first return integrable.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11587-018-0390-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136342", 
            "issn": [
              "0035-5038", 
              "1827-3491"
            ], 
            "name": "Ricerche di Matematica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "67"
          }
        ], 
        "name": "Derivatives not first return integrable on a fractal set", 
        "pagination": "597-604", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c9f517d96d9a47c307c28e48008665f85d43e0cfa33117207ca9d05e18aa0690"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11587-018-0390-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103158186"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11587-018-0390-z", 
          "https://app.dimensions.ai/details/publication/pub.1103158186"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130817_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11587-018-0390-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0390-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0390-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0390-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0390-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    75 TRIPLES      20 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11587-018-0390-z schema:author Ne9decf3355454080ba827ac0f2a30c03
    2 schema:citation sg:pub.10.1007/s10587-004-6420-x
    3 https://doi.org/10.1016/j.jmaa.2006.10.095
    4 https://doi.org/10.1016/j.jmaa.2008.05.084
    5 https://doi.org/10.1016/s1007-5704(98)90054-5
    6 https://doi.org/10.1017/cbo9780511623813
    7 https://doi.org/10.1142/s0218348x09004181
    8 https://doi.org/10.1142/s0218348x15500085
    9 schema:datePublished 2018-11
    10 schema:datePublishedReg 2018-11-01
    11 schema:description We extend to s-dimensional fractal sets the notion of first return integral (Definition 5) and we prove that there are s-derivatives not s-first return integrable.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N73d44a95530844cfbbba0cff2e48c437
    16 Nd62b0742f90546af8287029ada66a821
    17 sg:journal.1136342
    18 schema:name Derivatives not first return integrable on a fractal set
    19 schema:pagination 597-604
    20 schema:productId N408b94ab587949849175e9e95839bd7d
    21 N85cc6d5a3a5546d5a3384f0426583645
    22 Nbd27187dcf9e4f7c9eb168fb832ac09e
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103158186
    24 https://doi.org/10.1007/s11587-018-0390-z
    25 schema:sdDatePublished 2019-04-11T13:57
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N78d3ea503e9942d19f5c55cdc2d3ac78
    28 schema:url https://link.springer.com/10.1007%2Fs11587-018-0390-z
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N408b94ab587949849175e9e95839bd7d schema:name readcube_id
    33 schema:value c9f517d96d9a47c307c28e48008665f85d43e0cfa33117207ca9d05e18aa0690
    34 rdf:type schema:PropertyValue
    35 N73d44a95530844cfbbba0cff2e48c437 schema:volumeNumber 67
    36 rdf:type schema:PublicationVolume
    37 N78d3ea503e9942d19f5c55cdc2d3ac78 schema:name Springer Nature - SN SciGraph project
    38 rdf:type schema:Organization
    39 N85cc6d5a3a5546d5a3384f0426583645 schema:name dimensions_id
    40 schema:value pub.1103158186
    41 rdf:type schema:PropertyValue
    42 Nbd27187dcf9e4f7c9eb168fb832ac09e schema:name doi
    43 schema:value 10.1007/s11587-018-0390-z
    44 rdf:type schema:PropertyValue
    45 Nd62b0742f90546af8287029ada66a821 schema:issueNumber 2
    46 rdf:type schema:PublicationIssue
    47 Ne9decf3355454080ba827ac0f2a30c03 rdf:first sg:person.016505537331.26
    48 rdf:rest rdf:nil
    49 sg:journal.1136342 schema:issn 0035-5038
    50 1827-3491
    51 schema:name Ricerche di Matematica
    52 rdf:type schema:Periodical
    53 sg:person.016505537331.26 schema:affiliation https://www.grid.ac/institutes/grid.10776.37
    54 schema:familyName Bongiorno
    55 schema:givenName Donatella
    56 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505537331.26
    57 rdf:type schema:Person
    58 sg:pub.10.1007/s10587-004-6420-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005161031
    59 https://doi.org/10.1007/s10587-004-6420-x
    60 rdf:type schema:CreativeWork
    61 https://doi.org/10.1016/j.jmaa.2006.10.095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012513124
    62 rdf:type schema:CreativeWork
    63 https://doi.org/10.1016/j.jmaa.2008.05.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032635460
    64 rdf:type schema:CreativeWork
    65 https://doi.org/10.1016/s1007-5704(98)90054-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025407168
    66 rdf:type schema:CreativeWork
    67 https://doi.org/10.1017/cbo9780511623813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098672683
    68 rdf:type schema:CreativeWork
    69 https://doi.org/10.1142/s0218348x09004181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062974984
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1142/s0218348x15500085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062975209
    72 rdf:type schema:CreativeWork
    73 https://www.grid.ac/institutes/grid.10776.37 schema:alternateName University of Palermo
    74 schema:name Dipartimento Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Ed. 9, 90128, Palermo, Italy
    75 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...