Modeling magnetic domain-wall evolution in trilayers with structural inversion asymmetry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Giancarlo Consolo

ABSTRACT

The one-dimensional motion of magnetic domain walls in a thin ferromagnetic nanostrip sandwiched between a heavy metal and a metal oxide is investigated analytically in the framework of the extended Landau–Lifshitz–Gilbert equation. The trilayer system under investigation exhibits structural inversion asymmetry and exploits the combined effects of spin-transfer-torque and spin-orbit-torque to optimize the domain-wall propagation along the nanostrip. Through the traveling-wave formalism, an explicit expression for the key features involved in both steady and precessional regimes is provided, with a particular emphasis on the role played by the two spin-orbit-torque contributions, Rashba and Spin-Hall. In particular, it is shown how the domain-wall velocity and mobility, the direction of propagation, the depinning threshold and the Walker breakdown can be controlled via a suitable combination of Rashba and Spin-Hall coefficients. A comparison between analytical results and numerical data extracted from literature is also addressed revealing a qualitative agreement between them. Additional information on spin-orbit-torque-driven DW dynamics is extracted from such an analysis and, in particular, a linear dependence between the spin-Hall angle and the azimuthal angle is outlined as a possible mechanism responsible for the reversal of propagation direction. More... »

PAGES

1001-1015

Journal

TITLE

Ricerche di Matematica

ISSUE

2

VOLUME

67

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11587-018-0374-z

DOI

http://dx.doi.org/10.1007/s11587-018-0374-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101243347


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Messina", 
          "id": "https://www.grid.ac/institutes/grid.10438.3e", 
          "name": [
            "Department of Mathematical, Computer, Physical and Earth Sciences, University of Messina, V.le F. Stagno D\u2019Alcontres 31, Vill. S. Agata, 98166, Messina, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Consolo", 
        "givenName": "Giancarlo", 
        "id": "sg:person.016474132506.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016474132506.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001812456", 
          "https://doi.org/10.1038/nmat3553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep26180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003001867", 
          "https://doi.org/10.1038/srep26180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2007.08.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004642924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11587-016-0264-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013644141", 
          "https://doi.org/10.1007/s11587-016-0264-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020087497", 
          "https://doi.org/10.1038/nmat3020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10452-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021678993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022651800", 
          "https://doi.org/10.1038/nmat2961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10440-012-9733-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023027314", 
          "https://doi.org/10.1007/s10440-012-9733-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/78/57007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025680436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep23316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028708182", 
          "https://doi.org/10.1038/srep23316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2013.07.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031804494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4733674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032233162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.127204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032303895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.127204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032303895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11587-016-0268-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036403657", 
          "https://doi.org/10.1007/s11587-016-0268-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039216414", 
          "https://doi.org/10.1038/ncomms2386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2011.12.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043104336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047039714", 
          "https://doi.org/10.1038/nmat4360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4903216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048466589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048653780", 
          "https://doi.org/10.1038/nnano.2011.140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1663252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057741652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.352599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057968011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2013.2238899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061685391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1108813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4974534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074213111"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The one-dimensional motion of magnetic domain walls in a thin ferromagnetic nanostrip sandwiched between a heavy metal and a metal oxide is investigated analytically in the framework of the extended Landau\u2013Lifshitz\u2013Gilbert equation. The trilayer system under investigation exhibits structural inversion asymmetry and exploits the combined effects of spin-transfer-torque and spin-orbit-torque to optimize the domain-wall propagation along the nanostrip. Through the traveling-wave formalism, an explicit expression for the key features involved in both steady and precessional regimes is provided, with a particular emphasis on the role played by the two spin-orbit-torque contributions, Rashba and Spin-Hall. In particular, it is shown how the domain-wall velocity and mobility, the direction of propagation, the depinning threshold and the Walker breakdown can be controlled via a suitable combination of Rashba and Spin-Hall coefficients. A comparison between analytical results and numerical data extracted from literature is also addressed revealing a qualitative agreement between them. Additional information on spin-orbit-torque-driven DW dynamics is extracted from such an analysis and, in particular, a linear dependence between the spin-Hall angle and the azimuthal angle is outlined as a possible mechanism responsible for the reversal of propagation direction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11587-018-0374-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136342", 
        "issn": [
          "0035-5038", 
          "1827-3491"
        ], 
        "name": "Ricerche di Matematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "Modeling magnetic domain-wall evolution in trilayers with structural inversion asymmetry", 
    "pagination": "1001-1015", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "532271cffb4a38dbc9c9af2a5e88b13ebb6b9d4b05814234151f75dc64818afa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11587-018-0374-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101243347"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11587-018-0374-z", 
      "https://app.dimensions.ai/details/publication/pub.1101243347"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54307_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11587-018-0374-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0374-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0374-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0374-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0374-z'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11587-018-0374-z schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N72d4a055648d47569e2ff04ffbf5fce3
4 schema:citation sg:pub.10.1007/s10440-012-9733-z
5 sg:pub.10.1007/s11587-016-0264-1
6 sg:pub.10.1007/s11587-016-0268-x
7 sg:pub.10.1038/ncomms2386
8 sg:pub.10.1038/nmat2961
9 sg:pub.10.1038/nmat3020
10 sg:pub.10.1038/nmat3553
11 sg:pub.10.1038/nmat4360
12 sg:pub.10.1038/nnano.2011.140
13 sg:pub.10.1038/srep23316
14 sg:pub.10.1038/srep26180
15 https://doi.org/10.1016/j.apm.2011.12.024
16 https://doi.org/10.1016/j.apm.2013.07.032
17 https://doi.org/10.1016/j.physb.2007.08.076
18 https://doi.org/10.1063/1.1663252
19 https://doi.org/10.1063/1.352599
20 https://doi.org/10.1063/1.4733674
21 https://doi.org/10.1063/1.4903216
22 https://doi.org/10.1063/1.4974534
23 https://doi.org/10.1103/physrevlett.93.127204
24 https://doi.org/10.1109/tmag.2013.2238899
25 https://doi.org/10.1126/science.1108813
26 https://doi.org/10.1126/science.1145799
27 https://doi.org/10.1209/0295-5075/78/57007
28 https://doi.org/10.1209/epl/i2004-10452-6
29 schema:datePublished 2018-11
30 schema:datePublishedReg 2018-11-01
31 schema:description The one-dimensional motion of magnetic domain walls in a thin ferromagnetic nanostrip sandwiched between a heavy metal and a metal oxide is investigated analytically in the framework of the extended Landau–Lifshitz–Gilbert equation. The trilayer system under investigation exhibits structural inversion asymmetry and exploits the combined effects of spin-transfer-torque and spin-orbit-torque to optimize the domain-wall propagation along the nanostrip. Through the traveling-wave formalism, an explicit expression for the key features involved in both steady and precessional regimes is provided, with a particular emphasis on the role played by the two spin-orbit-torque contributions, Rashba and Spin-Hall. In particular, it is shown how the domain-wall velocity and mobility, the direction of propagation, the depinning threshold and the Walker breakdown can be controlled via a suitable combination of Rashba and Spin-Hall coefficients. A comparison between analytical results and numerical data extracted from literature is also addressed revealing a qualitative agreement between them. Additional information on spin-orbit-torque-driven DW dynamics is extracted from such an analysis and, in particular, a linear dependence between the spin-Hall angle and the azimuthal angle is outlined as a possible mechanism responsible for the reversal of propagation direction.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N6182b8053c6c4267b332107597febf49
36 Nbc7850c775c24a53865855d066cf17bd
37 sg:journal.1136342
38 schema:name Modeling magnetic domain-wall evolution in trilayers with structural inversion asymmetry
39 schema:pagination 1001-1015
40 schema:productId N0840f2908df1416ebadbe3fdd448876d
41 N62a576678f894faf9e3fe38b018a7af3
42 N770aec42ef7d479eb823ea2a42bef234
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101243347
44 https://doi.org/10.1007/s11587-018-0374-z
45 schema:sdDatePublished 2019-04-11T10:17
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N7fa1944bb78642979a80fdc8291109cb
48 schema:url https://link.springer.com/10.1007%2Fs11587-018-0374-z
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0840f2908df1416ebadbe3fdd448876d schema:name readcube_id
53 schema:value 532271cffb4a38dbc9c9af2a5e88b13ebb6b9d4b05814234151f75dc64818afa
54 rdf:type schema:PropertyValue
55 N6182b8053c6c4267b332107597febf49 schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 N62a576678f894faf9e3fe38b018a7af3 schema:name doi
58 schema:value 10.1007/s11587-018-0374-z
59 rdf:type schema:PropertyValue
60 N72d4a055648d47569e2ff04ffbf5fce3 rdf:first sg:person.016474132506.39
61 rdf:rest rdf:nil
62 N770aec42ef7d479eb823ea2a42bef234 schema:name dimensions_id
63 schema:value pub.1101243347
64 rdf:type schema:PropertyValue
65 N7fa1944bb78642979a80fdc8291109cb schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nbc7850c775c24a53865855d066cf17bd schema:volumeNumber 67
68 rdf:type schema:PublicationVolume
69 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
73 schema:name Other Physical Sciences
74 rdf:type schema:DefinedTerm
75 sg:journal.1136342 schema:issn 0035-5038
76 1827-3491
77 schema:name Ricerche di Matematica
78 rdf:type schema:Periodical
79 sg:person.016474132506.39 schema:affiliation https://www.grid.ac/institutes/grid.10438.3e
80 schema:familyName Consolo
81 schema:givenName Giancarlo
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016474132506.39
83 rdf:type schema:Person
84 sg:pub.10.1007/s10440-012-9733-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023027314
85 https://doi.org/10.1007/s10440-012-9733-z
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s11587-016-0264-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013644141
88 https://doi.org/10.1007/s11587-016-0264-1
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s11587-016-0268-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036403657
91 https://doi.org/10.1007/s11587-016-0268-x
92 rdf:type schema:CreativeWork
93 sg:pub.10.1038/ncomms2386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039216414
94 https://doi.org/10.1038/ncomms2386
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/nmat2961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022651800
97 https://doi.org/10.1038/nmat2961
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/nmat3020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020087497
100 https://doi.org/10.1038/nmat3020
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/nmat3553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001812456
103 https://doi.org/10.1038/nmat3553
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nmat4360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047039714
106 https://doi.org/10.1038/nmat4360
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/nnano.2011.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048653780
109 https://doi.org/10.1038/nnano.2011.140
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/srep23316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028708182
112 https://doi.org/10.1038/srep23316
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/srep26180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003001867
115 https://doi.org/10.1038/srep26180
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.apm.2011.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043104336
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.apm.2013.07.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031804494
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.physb.2007.08.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004642924
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.1663252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057741652
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.352599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057968011
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.4733674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032233162
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.4903216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048466589
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.4974534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074213111
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.93.127204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032303895
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tmag.2013.2238899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061685391
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1126/science.1108813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451522
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.1145799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456283
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1209/0295-5075/78/57007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025680436
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1209/epl/i2004-10452-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678993
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.10438.3e schema:alternateName University of Messina
146 schema:name Department of Mathematical, Computer, Physical and Earth Sciences, University of Messina, V.le F. Stagno D’Alcontres 31, Vill. S. Agata, 98166, Messina, Italy
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...