Some results on the complement of the comaximal ideal graphs of commutative rings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

S. Visweswaran, Jaydeep Parejiya

ABSTRACT

The rings considered in this article are commutative with identity which admit at least two maximal ideals. Let R be a ring. Recall from Ye and Wu (J Algebra Appl 11(6):1250114, 2012) that the comaximal ideal graph of R denoted by C(R) is an undirected graph whose vertex set is the set of all proper ideals I of R such that I⊈J(R), where J(R) is the Jacobson radical of R and distinct vertices I, J are joined by an edge in this graph if and only if I+J=R. The aim of this article is to study the interplay between the ring-theoretic properties of R and the graph-theoretic properties of (C(R))c, where (C(R))c is the complement of the comaximal ideal graph of R. More... »

PAGES

709-728

References to SciGraph publications

  • 2010-08-27. Zero-divisor graphs in commutative rings in COMMUTATIVE ALGEBRA
  • 2000. A Textbook of Graph Theory in NONE
  • Journal

    TITLE

    Ricerche di Matematica

    ISSUE

    2

    VOLUME

    67

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11587-018-0368-x

    DOI

    http://dx.doi.org/10.1007/s11587-018-0368-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100938681


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Saurashtra University", 
              "id": "https://www.grid.ac/institutes/grid.412428.9", 
              "name": [
                "Department of Mathematics, Saurashtra University, 360 005, Rajkot, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Visweswaran", 
            "givenName": "S.", 
            "id": "sg:person.010145122132.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145122132.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Saurashtra University", 
              "id": "https://www.grid.ac/institutes/grid.412428.9", 
              "name": [
                "Department of Mathematics, Saurashtra University, 360 005, Rajkot, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parejiya", 
            "givenName": "Jaydeep", 
            "id": "sg:person.014136062061.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014136062061.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1006/jabr.1995.1236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002282357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0004972710001875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003537996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2014/736043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004740710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8693(88)90202-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005467555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.disc.2011.10.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008328791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00927872.2011.591861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015997319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jabr.1998.7840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018831160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jalgebra.2007.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019868588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.endm.2013.11.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024001928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-6990-3_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024512748", 
              "https://doi.org/10.1007/978-1-4419-6990-3_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-6990-3_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024512748", 
              "https://doi.org/10.1007/978-1-4419-6990-3_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00927872.2012.744025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027108808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/23311835.2016.1155858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032414184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1037404381", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-8505-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037404381", 
              "https://doi.org/10.1007/978-1-4419-8505-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-8505-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037404381", 
              "https://doi.org/10.1007/978-1-4419-8505-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jalgebra.2008.06.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040499800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1081/agb-120013178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043754421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-4049(02)00250-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050459082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-4049(02)00250-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050459082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219498811004896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062995921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219498811004902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062995922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219498812501149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062996075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219498812502003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062996142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219498815500991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062996530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12988/ija.2013.3773", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064855580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2989/16073606.2014.981713", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070957531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cmb-2013-033-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072273273"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11", 
        "datePublishedReg": "2018-11-01", 
        "description": "The rings considered in this article are commutative with identity which admit at least two maximal ideals. Let R be a ring. Recall from Ye and Wu (J Algebra Appl 11(6):1250114, 2012) that the comaximal ideal graph of R denoted by C(R) is an undirected graph whose vertex set is the set of all proper ideals I of R such that I\u2288J(R), where J(R) is the Jacobson radical of R and distinct vertices I, J are joined by an edge in this graph if and only if I+J=R. The aim of this article is to study the interplay between the ring-theoretic properties of R and the graph-theoretic properties of (C(R))c, where (C(R))c is the complement of the comaximal ideal graph of R.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11587-018-0368-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136342", 
            "issn": [
              "0035-5038", 
              "1827-3491"
            ], 
            "name": "Ricerche di Matematica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "67"
          }
        ], 
        "name": "Some results on the complement of the comaximal ideal graphs of commutative rings", 
        "pagination": "709-728", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "044627520c9ebb27cf97f3e35bc21ada04d5f844af1178eaefc32804b22e880a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11587-018-0368-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100938681"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11587-018-0368-x", 
          "https://app.dimensions.ai/details/publication/pub.1100938681"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000562.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11587-018-0368-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0368-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0368-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0368-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0368-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11587-018-0368-x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ncb4c9845dcc5405cba576d03609d0ffd
    4 schema:citation sg:pub.10.1007/978-1-4419-6990-3_2
    5 sg:pub.10.1007/978-1-4419-8505-7
    6 https://app.dimensions.ai/details/publication/pub.1037404381
    7 https://doi.org/10.1006/jabr.1995.1236
    8 https://doi.org/10.1006/jabr.1998.7840
    9 https://doi.org/10.1016/0021-8693(88)90202-5
    10 https://doi.org/10.1016/j.disc.2011.10.020
    11 https://doi.org/10.1016/j.endm.2013.11.005
    12 https://doi.org/10.1016/j.jalgebra.2007.02.003
    13 https://doi.org/10.1016/j.jalgebra.2008.06.020
    14 https://doi.org/10.1016/s0022-4049(02)00250-5
    15 https://doi.org/10.1017/s0004972710001875
    16 https://doi.org/10.1080/00927872.2011.591861
    17 https://doi.org/10.1080/00927872.2012.744025
    18 https://doi.org/10.1080/23311835.2016.1155858
    19 https://doi.org/10.1081/agb-120013178
    20 https://doi.org/10.1142/s0219498811004896
    21 https://doi.org/10.1142/s0219498811004902
    22 https://doi.org/10.1142/s0219498812501149
    23 https://doi.org/10.1142/s0219498812502003
    24 https://doi.org/10.1142/s0219498815500991
    25 https://doi.org/10.1155/2014/736043
    26 https://doi.org/10.12988/ija.2013.3773
    27 https://doi.org/10.2989/16073606.2014.981713
    28 https://doi.org/10.4153/cmb-2013-033-7
    29 schema:datePublished 2018-11
    30 schema:datePublishedReg 2018-11-01
    31 schema:description The rings considered in this article are commutative with identity which admit at least two maximal ideals. Let R be a ring. Recall from Ye and Wu (J Algebra Appl 11(6):1250114, 2012) that the comaximal ideal graph of R denoted by C(R) is an undirected graph whose vertex set is the set of all proper ideals I of R such that I⊈J(R), where J(R) is the Jacobson radical of R and distinct vertices I, J are joined by an edge in this graph if and only if I+J=R. The aim of this article is to study the interplay between the ring-theoretic properties of R and the graph-theoretic properties of (C(R))c, where (C(R))c is the complement of the comaximal ideal graph of R.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N574e83d137a34769b2b13ed925367c2e
    36 N78170fc9f7334466aa32a37383a6718b
    37 sg:journal.1136342
    38 schema:name Some results on the complement of the comaximal ideal graphs of commutative rings
    39 schema:pagination 709-728
    40 schema:productId N3ee8a8aee1244d4d88a8aa9eb91a40bd
    41 N6561302b22044ccfb34a689f62df7750
    42 N745c56b67bc8402da8d3147792baaafb
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100938681
    44 https://doi.org/10.1007/s11587-018-0368-x
    45 schema:sdDatePublished 2019-04-10T18:28
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Nfa5a1dfb7c354e16975275351afd78d9
    48 schema:url https://link.springer.com/10.1007%2Fs11587-018-0368-x
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N3ee8a8aee1244d4d88a8aa9eb91a40bd schema:name dimensions_id
    53 schema:value pub.1100938681
    54 rdf:type schema:PropertyValue
    55 N574e83d137a34769b2b13ed925367c2e schema:issueNumber 2
    56 rdf:type schema:PublicationIssue
    57 N6561302b22044ccfb34a689f62df7750 schema:name doi
    58 schema:value 10.1007/s11587-018-0368-x
    59 rdf:type schema:PropertyValue
    60 N745c56b67bc8402da8d3147792baaafb schema:name readcube_id
    61 schema:value 044627520c9ebb27cf97f3e35bc21ada04d5f844af1178eaefc32804b22e880a
    62 rdf:type schema:PropertyValue
    63 N78170fc9f7334466aa32a37383a6718b schema:volumeNumber 67
    64 rdf:type schema:PublicationVolume
    65 N7b4296c08f1349b58d6397ca0fe73e46 rdf:first sg:person.014136062061.79
    66 rdf:rest rdf:nil
    67 Ncb4c9845dcc5405cba576d03609d0ffd rdf:first sg:person.010145122132.86
    68 rdf:rest N7b4296c08f1349b58d6397ca0fe73e46
    69 Nfa5a1dfb7c354e16975275351afd78d9 schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Mathematical Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Pure Mathematics
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1136342 schema:issn 0035-5038
    78 1827-3491
    79 schema:name Ricerche di Matematica
    80 rdf:type schema:Periodical
    81 sg:person.010145122132.86 schema:affiliation https://www.grid.ac/institutes/grid.412428.9
    82 schema:familyName Visweswaran
    83 schema:givenName S.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145122132.86
    85 rdf:type schema:Person
    86 sg:person.014136062061.79 schema:affiliation https://www.grid.ac/institutes/grid.412428.9
    87 schema:familyName Parejiya
    88 schema:givenName Jaydeep
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014136062061.79
    90 rdf:type schema:Person
    91 sg:pub.10.1007/978-1-4419-6990-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024512748
    92 https://doi.org/10.1007/978-1-4419-6990-3_2
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/978-1-4419-8505-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037404381
    95 https://doi.org/10.1007/978-1-4419-8505-7
    96 rdf:type schema:CreativeWork
    97 https://app.dimensions.ai/details/publication/pub.1037404381 schema:CreativeWork
    98 https://doi.org/10.1006/jabr.1995.1236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002282357
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1006/jabr.1998.7840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018831160
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/0021-8693(88)90202-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005467555
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.disc.2011.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008328791
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.endm.2013.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024001928
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.jalgebra.2007.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019868588
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.jalgebra.2008.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040499800
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/s0022-4049(02)00250-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050459082
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1017/s0004972710001875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003537996
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1080/00927872.2011.591861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015997319
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1080/00927872.2012.744025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027108808
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1080/23311835.2016.1155858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032414184
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1081/agb-120013178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043754421
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1142/s0219498811004896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062995921
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1142/s0219498811004902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062995922
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1142/s0219498812501149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062996075
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1142/s0219498812502003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062996142
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1142/s0219498815500991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062996530
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1155/2014/736043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004740710
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.12988/ija.2013.3773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064855580
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.2989/16073606.2014.981713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070957531
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.4153/cmb-2013-033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072273273
    141 rdf:type schema:CreativeWork
    142 https://www.grid.ac/institutes/grid.412428.9 schema:alternateName Saurashtra University
    143 schema:name Department of Mathematics, Saurashtra University, 360 005, Rajkot, India
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...