Uniqueness theorems about high-order time differential thermoelastic models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Vittorio Zampoli

ABSTRACT

The purpose of the present manuscript is to investigate the well-posedness question for three different stand-alone and self-consistent thermoelastic models derived from the time differential formulation of the dual-phase-lag heat conduction law and characterized by Taylor expansion orders higher than those most commonly considered in literature up to now. The main motivation at the basis of this study is that the interaction among multiple energy carriers progressively gains significance as the observation scales reduce and has, as a direct consequence, the involvement of high-order terms in the time differential dual-phase-lag heat conduction constitutive equation. Considering inhomogeneous and anisotropic linear thermoelastic materials, we are able to prove three uniqueness results through the use of appropriate integral operators and Lagrange identities; the results are proved without any restriction imposed on the delay times other than their positivity. More... »

PAGES

929-950

References to SciGraph publications

Journal

TITLE

Ricerche di Matematica

ISSUE

2

VOLUME

67

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11587-018-0351-6

DOI

http://dx.doi.org/10.1007/s11587-018-0351-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100424812


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Salerno", 
          "id": "https://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Dipartimento di Ingegneria dell\u2019Informazione ed Elettrica e Matematica Applicata, Universit\u00e0 di Salerno, via Giovanni Paolo II n. 132, 84084, Fisciano, SA, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zampoli", 
        "givenName": "Vittorio", 
        "id": "sg:person.015450521441.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450521441.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1098/rspa.2015.0400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001998918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7225(87)90126-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006071379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7225(87)90126-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006071379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01495730701738272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009146417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jnetdy.2002.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016117598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11012-016-0414-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017080172", 
          "https://doi.org/10.1007/s11012-016-0414-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018174573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2006.1784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022347454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01495730601130919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022440025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mma.548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026805453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(95)00052-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029826927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032415039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01495739.2013.839619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041086515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01495738808961933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045294603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046674183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01495739.2016.1195242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047188508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechrescom.2008.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047311317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049151848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2822329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062085088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/05062860x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jnet-2016-0039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067544629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2017.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085578128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086124562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4992739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096032182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01495739.2017.1397494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099609750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118818275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109507652"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The purpose of the present manuscript is to investigate the well-posedness question for three different stand-alone and self-consistent thermoelastic models derived from the time differential formulation of the dual-phase-lag heat conduction law and characterized by Taylor expansion orders higher than those most commonly considered in literature up to now. The main motivation at the basis of this study is that the interaction among multiple energy carriers progressively gains significance as the observation scales reduce and has, as a direct consequence, the involvement of high-order terms in the time differential dual-phase-lag heat conduction constitutive equation. Considering inhomogeneous and anisotropic linear thermoelastic materials, we are able to prove three uniqueness results through the use of appropriate integral operators and Lagrange identities; the results are proved without any restriction imposed on the delay times other than their positivity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11587-018-0351-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136342", 
        "issn": [
          "0035-5038", 
          "1827-3491"
        ], 
        "name": "Ricerche di Matematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "Uniqueness theorems about high-order time differential thermoelastic models", 
    "pagination": "929-950", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6b1994a5487bbf81b11a5eb2f36ed92d5bfbed57f33d93ed15e8050facbb6e4d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11587-018-0351-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100424812"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11587-018-0351-6", 
      "https://app.dimensions.ai/details/publication/pub.1100424812"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11587-018-0351-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0351-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0351-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0351-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11587-018-0351-6'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11587-018-0351-6 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N154f863f39cb4ce79515693abe437cd2
4 schema:citation sg:pub.10.1007/s11012-016-0414-2
5 https://doi.org/10.1002/9781118818275
6 https://doi.org/10.1002/mma.548
7 https://doi.org/10.1016/0017-9310(95)00052-b
8 https://doi.org/10.1016/0020-7225(87)90126-1
9 https://doi.org/10.1016/j.apm.2017.05.023
10 https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.016
11 https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.027
12 https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.019
13 https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.071
14 https://doi.org/10.1016/j.mechrescom.2008.04.001
15 https://doi.org/10.1063/1.4992739
16 https://doi.org/10.1080/01495730601130919
17 https://doi.org/10.1080/01495730701738272
18 https://doi.org/10.1080/01495738808961933
19 https://doi.org/10.1080/01495739.2013.839619
20 https://doi.org/10.1080/01495739.2016.1195242
21 https://doi.org/10.1080/01495739.2017.1397494
22 https://doi.org/10.1098/rspa.2006.1784
23 https://doi.org/10.1098/rspa.2015.0400
24 https://doi.org/10.1115/1.2822329
25 https://doi.org/10.1137/05062860x
26 https://doi.org/10.1515/jnet-2016-0039
27 https://doi.org/10.1515/jnetdy.2002.012
28 https://doi.org/10.2514/3.725
29 schema:datePublished 2018-11
30 schema:datePublishedReg 2018-11-01
31 schema:description The purpose of the present manuscript is to investigate the well-posedness question for three different stand-alone and self-consistent thermoelastic models derived from the time differential formulation of the dual-phase-lag heat conduction law and characterized by Taylor expansion orders higher than those most commonly considered in literature up to now. The main motivation at the basis of this study is that the interaction among multiple energy carriers progressively gains significance as the observation scales reduce and has, as a direct consequence, the involvement of high-order terms in the time differential dual-phase-lag heat conduction constitutive equation. Considering inhomogeneous and anisotropic linear thermoelastic materials, we are able to prove three uniqueness results through the use of appropriate integral operators and Lagrange identities; the results are proved without any restriction imposed on the delay times other than their positivity.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N77af5a2c5eb84c17af7b0b9a72c720d1
36 Nc803df2bfa49452f948a2cadf136d99a
37 sg:journal.1136342
38 schema:name Uniqueness theorems about high-order time differential thermoelastic models
39 schema:pagination 929-950
40 schema:productId N14c0aaa7bae94c20b1cb3619ece63636
41 N4a4be922ae6d44ab9908d9c7aea5af95
42 Ne8405c2fdaa8498bb84bb2719f0d8772
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100424812
44 https://doi.org/10.1007/s11587-018-0351-6
45 schema:sdDatePublished 2019-04-10T18:33
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nd165104dec2946fb8d003066e08e9a87
48 schema:url https://link.springer.com/10.1007%2Fs11587-018-0351-6
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N14c0aaa7bae94c20b1cb3619ece63636 schema:name readcube_id
53 schema:value 6b1994a5487bbf81b11a5eb2f36ed92d5bfbed57f33d93ed15e8050facbb6e4d
54 rdf:type schema:PropertyValue
55 N154f863f39cb4ce79515693abe437cd2 rdf:first sg:person.015450521441.15
56 rdf:rest rdf:nil
57 N4a4be922ae6d44ab9908d9c7aea5af95 schema:name doi
58 schema:value 10.1007/s11587-018-0351-6
59 rdf:type schema:PropertyValue
60 N77af5a2c5eb84c17af7b0b9a72c720d1 schema:issueNumber 2
61 rdf:type schema:PublicationIssue
62 Nc803df2bfa49452f948a2cadf136d99a schema:volumeNumber 67
63 rdf:type schema:PublicationVolume
64 Nd165104dec2946fb8d003066e08e9a87 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Ne8405c2fdaa8498bb84bb2719f0d8772 schema:name dimensions_id
67 schema:value pub.1100424812
68 rdf:type schema:PropertyValue
69 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
70 schema:name Psychology and Cognitive Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
73 schema:name Psychology
74 rdf:type schema:DefinedTerm
75 sg:journal.1136342 schema:issn 0035-5038
76 1827-3491
77 schema:name Ricerche di Matematica
78 rdf:type schema:Periodical
79 sg:person.015450521441.15 schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
80 schema:familyName Zampoli
81 schema:givenName Vittorio
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450521441.15
83 rdf:type schema:Person
84 sg:pub.10.1007/s11012-016-0414-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017080172
85 https://doi.org/10.1007/s11012-016-0414-2
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/9781118818275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109507652
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1002/mma.548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026805453
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0017-9310(95)00052-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1029826927
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0020-7225(87)90126-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006071379
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.apm.2017.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085578128
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046674183
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018174573
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032415039
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086124562
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.mechrescom.2008.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047311317
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.4992739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096032182
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1080/01495730601130919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022440025
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1080/01495730701738272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009146417
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1080/01495738808961933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045294603
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1080/01495739.2013.839619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041086515
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1080/01495739.2016.1195242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047188508
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1080/01495739.2017.1397494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099609750
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1098/rspa.2006.1784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022347454
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1098/rspa.2015.0400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001998918
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1115/1.2822329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062085088
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1137/05062860x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846146
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1515/jnet-2016-0039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067544629
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1515/jnetdy.2002.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016117598
132 rdf:type schema:CreativeWork
133 https://doi.org/10.2514/3.725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049151848
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.11780.3f schema:alternateName University of Salerno
136 schema:name Dipartimento di Ingegneria dell’Informazione ed Elettrica e Matematica Applicata, Università di Salerno, via Giovanni Paolo II n. 132, 84084, Fisciano, SA, Italy
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...