A note on groups whose non-normal subgroups are either abelian or minimal non-abelian View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Sevgi Atlıhan, Francesco de Giovanni

ABSTRACT

A group G is called parahamiltonian if each non-normal subgroup of G is either abelian or minimal non-abelian. Thus all biminimal non-abelian groups are parahamiltonian, and the class of parahamiltonian groups contains the important class of metahamiltonain groups, introduced by Romalis and Sesekin about 50 years ago. The aim of this paper is to describe the structure of locally graded parahamiltonian groups. More... »

PAGES

891-898

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11587-017-0344-x

DOI

http://dx.doi.org/10.1007/s11587-017-0344-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092820555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gazi University", 
          "id": "https://www.grid.ac/institutes/grid.25769.3f", 
          "name": [
            "Matematik B\u00f6l\u00fcm\u00fc, Gazi \u00dcniversitesi, Ankara, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atl\u0131han", 
        "givenName": "Sevgi", 
        "id": "sg:person.011255327115.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255327115.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Dipartimento di Matematica e Applicazioni, Universit\u00e0 di Napoli Federico II, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Giovanni", 
        "givenName": "Francesco", 
        "id": "sg:person.016613740023.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016613740023.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-011-3618-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006574633", 
          "https://doi.org/10.1007/978-94-011-3618-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3618-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006574633", 
          "https://doi.org/10.1007/978-94-011-3618-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8594-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008672834", 
          "https://doi.org/10.1007/978-1-4419-8594-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8594-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008672834", 
          "https://doi.org/10.1007/978-1-4419-8594-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11253-005-0144-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009349812", 
          "https://doi.org/10.1007/s11253-005-0144-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11253-005-0144-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009349812", 
          "https://doi.org/10.1007/s11253-005-0144-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927870802337168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021791210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.45.4.578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025242086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01141770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037325068", 
          "https://doi.org/10.1007/bf01141770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01141770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037325068", 
          "https://doi.org/10.1007/bf01141770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8693(76)90249-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040884734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02414850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049612877", 
          "https://doi.org/10.1007/bf02414850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0017089513000190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054784383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0017089513000190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054784383"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "A group G is called parahamiltonian if each non-normal subgroup of G is either abelian or minimal non-abelian. Thus all biminimal non-abelian groups are parahamiltonian, and the class of parahamiltonian groups contains the important class of metahamiltonain groups, introduced by Romalis and Sesekin about 50 years ago. The aim of this paper is to describe the structure of locally graded parahamiltonian groups.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11587-017-0344-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136342", 
        "issn": [
          "0035-5038", 
          "1827-3491"
        ], 
        "name": "Ricerche di Matematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "A note on groups whose non-normal subgroups are either abelian or minimal non-abelian", 
    "pagination": "891-898", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b288310c30aa19d5f28379db985b2b4eff86e76f0c6969178f8822a7b5dc4578"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11587-017-0344-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092820555"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11587-017-0344-x", 
      "https://app.dimensions.ai/details/publication/pub.1092820555"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000562.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11587-017-0344-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11587-017-0344-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11587-017-0344-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11587-017-0344-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11587-017-0344-x'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11587-017-0344-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9e6db03ef3964bca83b79bb62f74cf7e
4 schema:citation sg:pub.10.1007/978-1-4419-8594-1
5 sg:pub.10.1007/978-94-011-3618-1
6 sg:pub.10.1007/bf01141770
7 sg:pub.10.1007/bf02414850
8 sg:pub.10.1007/s11253-005-0144-4
9 https://doi.org/10.1016/0021-8693(76)90249-0
10 https://doi.org/10.1017/s0017089513000190
11 https://doi.org/10.1073/pnas.45.4.578
12 https://doi.org/10.1080/00927870802337168
13 schema:datePublished 2018-11
14 schema:datePublishedReg 2018-11-01
15 schema:description A group G is called parahamiltonian if each non-normal subgroup of G is either abelian or minimal non-abelian. Thus all biminimal non-abelian groups are parahamiltonian, and the class of parahamiltonian groups contains the important class of metahamiltonain groups, introduced by Romalis and Sesekin about 50 years ago. The aim of this paper is to describe the structure of locally graded parahamiltonian groups.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N691f37a02774424baf8aa2476722d342
20 Nd244b323c7b9406288c094652369760c
21 sg:journal.1136342
22 schema:name A note on groups whose non-normal subgroups are either abelian or minimal non-abelian
23 schema:pagination 891-898
24 schema:productId N4743af9f63474a21b85cac76e72dbb35
25 Nac35cc6947f44dd891f36f09f1c1ffdf
26 Ncfb67b96f2464125848be443f6e77a1d
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092820555
28 https://doi.org/10.1007/s11587-017-0344-x
29 schema:sdDatePublished 2019-04-10T18:28
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N37bcaabbcb9742c38408b8720839dfe9
32 schema:url https://link.springer.com/10.1007%2Fs11587-017-0344-x
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N37bcaabbcb9742c38408b8720839dfe9 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N4743af9f63474a21b85cac76e72dbb35 schema:name dimensions_id
39 schema:value pub.1092820555
40 rdf:type schema:PropertyValue
41 N691f37a02774424baf8aa2476722d342 schema:issueNumber 2
42 rdf:type schema:PublicationIssue
43 N9e6db03ef3964bca83b79bb62f74cf7e rdf:first sg:person.011255327115.33
44 rdf:rest Nac3f56c8b67846f69258624566c4169b
45 Nac35cc6947f44dd891f36f09f1c1ffdf schema:name readcube_id
46 schema:value b288310c30aa19d5f28379db985b2b4eff86e76f0c6969178f8822a7b5dc4578
47 rdf:type schema:PropertyValue
48 Nac3f56c8b67846f69258624566c4169b rdf:first sg:person.016613740023.55
49 rdf:rest rdf:nil
50 Ncfb67b96f2464125848be443f6e77a1d schema:name doi
51 schema:value 10.1007/s11587-017-0344-x
52 rdf:type schema:PropertyValue
53 Nd244b323c7b9406288c094652369760c schema:volumeNumber 67
54 rdf:type schema:PublicationVolume
55 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
56 schema:name Engineering
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
59 schema:name Materials Engineering
60 rdf:type schema:DefinedTerm
61 sg:journal.1136342 schema:issn 0035-5038
62 1827-3491
63 schema:name Ricerche di Matematica
64 rdf:type schema:Periodical
65 sg:person.011255327115.33 schema:affiliation https://www.grid.ac/institutes/grid.25769.3f
66 schema:familyName Atlıhan
67 schema:givenName Sevgi
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255327115.33
69 rdf:type schema:Person
70 sg:person.016613740023.55 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
71 schema:familyName de Giovanni
72 schema:givenName Francesco
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016613740023.55
74 rdf:type schema:Person
75 sg:pub.10.1007/978-1-4419-8594-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008672834
76 https://doi.org/10.1007/978-1-4419-8594-1
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/978-94-011-3618-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006574633
79 https://doi.org/10.1007/978-94-011-3618-1
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01141770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037325068
82 https://doi.org/10.1007/bf01141770
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf02414850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049612877
85 https://doi.org/10.1007/bf02414850
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s11253-005-0144-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009349812
88 https://doi.org/10.1007/s11253-005-0144-4
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0021-8693(76)90249-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040884734
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1017/s0017089513000190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054784383
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1073/pnas.45.4.578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025242086
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1080/00927870802337168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021791210
97 rdf:type schema:CreativeWork
98 https://www.grid.ac/institutes/grid.25769.3f schema:alternateName Gazi University
99 schema:name Matematik Bölümü, Gazi Üniversitesi, Ankara, Turkey
100 rdf:type schema:Organization
101 https://www.grid.ac/institutes/grid.4691.a schema:alternateName University of Naples Federico II
102 schema:name Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Naples, Italy
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...