Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-01-19

AUTHORS

Fei Chen, Mao-xiang Jing, Hua Yang, Wei-yong Yuan, Ming-quan Liu, Yong-sheng Ji, Shahid Hussain, Xiang-qian Shen

ABSTRACT

High room-temperature ionic conductivity and mechanical property are essential for the application of solid electrolyte. In this work, a poly(vinylidene fluoride) (PVDF)-based composite polymer solid electrolyte membrane (CSE) incorporated with Li7La3Zr2O12 (LLZO) fillers and high-strength porous skeleton was prepared. The introduction of LLZO increased the ionic conductivity of PVDF at room temperature by reducing the crystallinity of PVDF matrix, and the addition of skeleton greatly improved the mechanical property of electrolyte membrane and inhibited the growth of lithium dendrites. The prepared PVDF-LLZO CSE has a room-temperature ionic conductivity of 1.75 × 10−4 S/cm, and the tensile strength reaches 95 MPa, which greatly enhanced the ability of lithium dendrite suppression. The assembled LiNi0.6Co0.2Mn0.2O2 (NCM622)/CSE/Li cell shows an initial capacity of 151 mAh/g with a retention capacity of 108 mAh/g after 100 cycles at the current density of 0.5 C. This ultrathin PVDF/LLZO CSE has a great application prospect in solid-state lithium batteries. More... »

PAGES

1101-1111

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11581-020-03891-0

DOI

http://dx.doi.org/10.1007/s11581-020-03891-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1134706544


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, School of Materials Science and Technology, Jiangsu University, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, School of Materials Science and Technology, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Fei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, School of Materials Science and Technology, Jiangsu University, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, School of Materials Science and Technology, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jing", 
        "givenName": "Mao-xiang", 
        "id": "sg:person.01162236364.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, School of Materials Science and Technology, Jiangsu University, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, School of Materials Science and Technology, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Hua", 
        "id": "sg:person.012272363622.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272363622.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, 400715, Chongqing, China", 
          "id": "http://www.grid.ac/institutes/grid.263906.8", 
          "name": [
            "Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, 400715, Chongqing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Wei-yong", 
        "id": "sg:person.01133352624.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133352624.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu Runchi Solar Material Technology Co., Ltd, 212218, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Jiangsu Runchi Solar Material Technology Co., Ltd, 212218, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ming-quan", 
        "id": "sg:person.010507645011.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010507645011.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu Runchi Solar Material Technology Co., Ltd, 212218, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Jiangsu Runchi Solar Material Technology Co., Ltd, 212218, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Yong-sheng", 
        "id": "sg:person.011305225411.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011305225411.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, School of Materials Science and Technology, Jiangsu University, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, School of Materials Science and Technology, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussain", 
        "givenName": "Shahid", 
        "id": "sg:person.016226725227.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226725227.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, School of Materials Science and Technology, Jiangsu University, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, School of Materials Science and Technology, Jiangsu University, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Xiang-qian", 
        "id": "sg:person.0601655670.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41467-019-09061-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112576695", 
          "https://doi.org/10.1038/s41467-019-09061-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41565-020-0657-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125501421", 
          "https://doi.org/10.1038/s41565-020-0657-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11581-020-03612-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127895164", 
          "https://doi.org/10.1007/s11581-020-03612-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-020-04667-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126917804", 
          "https://doi.org/10.1007/s10853-020-04667-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-07882-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110929190", 
          "https://doi.org/10.1038/s41467-018-07882-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-019-01585-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1116067215", 
          "https://doi.org/10.1007/s10854-019-01585-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-01-19", 
    "datePublishedReg": "2021-01-19", 
    "description": "High room-temperature ionic conductivity and mechanical property are essential for the application of solid electrolyte. In this work, a poly(vinylidene fluoride) (PVDF)-based composite polymer solid electrolyte membrane (CSE) incorporated with Li7La3Zr2O12 (LLZO) fillers and high-strength porous skeleton was prepared. The introduction of LLZO increased the ionic conductivity of PVDF at room temperature by reducing the crystallinity of PVDF matrix, and the addition of skeleton greatly improved the mechanical property of electrolyte membrane and inhibited the growth of lithium dendrites. The prepared PVDF-LLZO CSE has a room-temperature ionic conductivity of 1.75\u2009\u00d7\u200910\u22124\u00a0S/cm, and the tensile strength reaches 95\u00a0MPa, which greatly enhanced the ability of lithium dendrite suppression. The assembled LiNi0.6Co0.2Mn0.2O2 (NCM622)/CSE/Li cell shows an initial capacity of 151\u00a0mAh/g with a retention capacity of 108\u00a0mAh/g after 100\u00a0cycles at the current density of 0.5\u00a0C. This ultrathin PVDF/LLZO CSE has a great application prospect in solid-state lithium batteries.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11581-020-03891-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041836", 
        "issn": [
          "0947-7047", 
          "1862-0760"
        ], 
        "name": "Ionics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "solid electrolyte membrane", 
      "electrolyte membranes", 
      "room temperature ionic conductivity", 
      "mechanical properties", 
      "ionic conductivity", 
      "solid-state lithium batteries", 
      "great application prospects", 
      "highest room temperature ionic conductivity", 
      "PVDF matrix", 
      "mechanical reinforcement", 
      "tensile strength", 
      "lithium dendrites", 
      "porous skeleton", 
      "current density", 
      "initial capacity", 
      "lithium batteries", 
      "solid electrolytes", 
      "application prospects", 
      "Li cells", 
      "conductivity", 
      "room temperature", 
      "retention capacity", 
      "filler", 
      "PVDF", 
      "MPa", 
      "LLZO", 
      "properties", 
      "batteries", 
      "crystallinity", 
      "reinforcement", 
      "electrolyte", 
      "temperature", 
      "strength", 
      "capacity", 
      "matrix", 
      "density", 
      "applications", 
      "Li", 
      "membrane", 
      "lithium", 
      "work", 
      "cycle", 
      "incorporation", 
      "prospects", 
      "addition", 
      "dendrites", 
      "skeleton", 
      "suppression", 
      "ability of lithium", 
      "introduction", 
      "growth", 
      "ability", 
      "cells"
    ], 
    "name": "Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement", 
    "pagination": "1101-1111", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1134706544"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11581-020-03891-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11581-020-03891-0", 
      "https://app.dimensions.ai/details/publication/pub.1134706544"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_876.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11581-020-03891-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11581-020-03891-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11581-020-03891-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11581-020-03891-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11581-020-03891-0'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      22 PREDICATES      84 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11581-020-03891-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4ba4039613444078a2d95967bb347cda
4 schema:citation sg:pub.10.1007/s10853-020-04667-7
5 sg:pub.10.1007/s10854-019-01585-6
6 sg:pub.10.1007/s11581-020-03612-7
7 sg:pub.10.1038/s41467-018-07882-8
8 sg:pub.10.1038/s41467-019-09061-9
9 sg:pub.10.1038/s41565-020-0657-x
10 schema:datePublished 2021-01-19
11 schema:datePublishedReg 2021-01-19
12 schema:description High room-temperature ionic conductivity and mechanical property are essential for the application of solid electrolyte. In this work, a poly(vinylidene fluoride) (PVDF)-based composite polymer solid electrolyte membrane (CSE) incorporated with Li7La3Zr2O12 (LLZO) fillers and high-strength porous skeleton was prepared. The introduction of LLZO increased the ionic conductivity of PVDF at room temperature by reducing the crystallinity of PVDF matrix, and the addition of skeleton greatly improved the mechanical property of electrolyte membrane and inhibited the growth of lithium dendrites. The prepared PVDF-LLZO CSE has a room-temperature ionic conductivity of 1.75 × 10−4 S/cm, and the tensile strength reaches 95 MPa, which greatly enhanced the ability of lithium dendrite suppression. The assembled LiNi0.6Co0.2Mn0.2O2 (NCM622)/CSE/Li cell shows an initial capacity of 151 mAh/g with a retention capacity of 108 mAh/g after 100 cycles at the current density of 0.5 C. This ultrathin PVDF/LLZO CSE has a great application prospect in solid-state lithium batteries.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N54549b2edd1d4549be441b4da3264557
17 Nc1dc63823c4c49d9a391e99c24e4f363
18 sg:journal.1041836
19 schema:keywords LLZO
20 Li
21 Li cells
22 MPa
23 PVDF
24 PVDF matrix
25 ability
26 ability of lithium
27 addition
28 application prospects
29 applications
30 batteries
31 capacity
32 cells
33 conductivity
34 crystallinity
35 current density
36 cycle
37 dendrites
38 density
39 electrolyte
40 electrolyte membranes
41 filler
42 great application prospects
43 growth
44 highest room temperature ionic conductivity
45 incorporation
46 initial capacity
47 introduction
48 ionic conductivity
49 lithium
50 lithium batteries
51 lithium dendrites
52 matrix
53 mechanical properties
54 mechanical reinforcement
55 membrane
56 porous skeleton
57 properties
58 prospects
59 reinforcement
60 retention capacity
61 room temperature
62 room temperature ionic conductivity
63 skeleton
64 solid electrolyte membrane
65 solid electrolytes
66 solid-state lithium batteries
67 strength
68 suppression
69 temperature
70 tensile strength
71 work
72 schema:name Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement
73 schema:pagination 1101-1111
74 schema:productId N28152647bfad4013a2f8d41cc876f712
75 Nebd2c4aca8ae4c6d8ec8536cd69e1c07
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134706544
77 https://doi.org/10.1007/s11581-020-03891-0
78 schema:sdDatePublished 2022-05-20T07:38
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher Na4b8d85cfb594f90b6102e2cd1071b70
81 schema:url https://doi.org/10.1007/s11581-020-03891-0
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N100136c65c87431394e4eba5269d8088 rdf:first sg:person.010507645011.37
86 rdf:rest N1dc5167dec14436f8be3c8a71bbb99d5
87 N1b9c65b7bed442f2b1901ce9217ec74d rdf:first sg:person.0601655670.06
88 rdf:rest rdf:nil
89 N1dc5167dec14436f8be3c8a71bbb99d5 rdf:first sg:person.011305225411.13
90 rdf:rest N89996b7bd11c4f92a899c0921e04cf33
91 N28152647bfad4013a2f8d41cc876f712 schema:name dimensions_id
92 schema:value pub.1134706544
93 rdf:type schema:PropertyValue
94 N4ba4039613444078a2d95967bb347cda rdf:first N88aef4a60e004c33ab04e257229e73d1
95 rdf:rest N6bc266e3d0474b6ca70e732b4b3f54d4
96 N4e89e9f0403545c6bd1a3d312bd89b71 rdf:first sg:person.01133352624.52
97 rdf:rest N100136c65c87431394e4eba5269d8088
98 N54549b2edd1d4549be441b4da3264557 schema:issueNumber 3
99 rdf:type schema:PublicationIssue
100 N6bc266e3d0474b6ca70e732b4b3f54d4 rdf:first sg:person.01162236364.13
101 rdf:rest N7caf4614faec4f2386da3573ef8fcef0
102 N7caf4614faec4f2386da3573ef8fcef0 rdf:first sg:person.012272363622.11
103 rdf:rest N4e89e9f0403545c6bd1a3d312bd89b71
104 N88aef4a60e004c33ab04e257229e73d1 schema:affiliation grid-institutes:grid.440785.a
105 schema:familyName Chen
106 schema:givenName Fei
107 rdf:type schema:Person
108 N89996b7bd11c4f92a899c0921e04cf33 rdf:first sg:person.016226725227.42
109 rdf:rest N1b9c65b7bed442f2b1901ce9217ec74d
110 Na4b8d85cfb594f90b6102e2cd1071b70 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Nc1dc63823c4c49d9a391e99c24e4f363 schema:volumeNumber 27
113 rdf:type schema:PublicationVolume
114 Nebd2c4aca8ae4c6d8ec8536cd69e1c07 schema:name doi
115 schema:value 10.1007/s11581-020-03891-0
116 rdf:type schema:PropertyValue
117 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
118 schema:name Engineering
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
121 schema:name Materials Engineering
122 rdf:type schema:DefinedTerm
123 sg:journal.1041836 schema:issn 0947-7047
124 1862-0760
125 schema:name Ionics
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.010507645011.37 schema:affiliation grid-institutes:None
129 schema:familyName Liu
130 schema:givenName Ming-quan
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010507645011.37
132 rdf:type schema:Person
133 sg:person.011305225411.13 schema:affiliation grid-institutes:None
134 schema:familyName Ji
135 schema:givenName Yong-sheng
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011305225411.13
137 rdf:type schema:Person
138 sg:person.01133352624.52 schema:affiliation grid-institutes:grid.263906.8
139 schema:familyName Yuan
140 schema:givenName Wei-yong
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133352624.52
142 rdf:type schema:Person
143 sg:person.01162236364.13 schema:affiliation grid-institutes:grid.440785.a
144 schema:familyName Jing
145 schema:givenName Mao-xiang
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13
147 rdf:type schema:Person
148 sg:person.012272363622.11 schema:affiliation grid-institutes:grid.440785.a
149 schema:familyName Yang
150 schema:givenName Hua
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272363622.11
152 rdf:type schema:Person
153 sg:person.016226725227.42 schema:affiliation grid-institutes:grid.440785.a
154 schema:familyName Hussain
155 schema:givenName Shahid
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226725227.42
157 rdf:type schema:Person
158 sg:person.0601655670.06 schema:affiliation grid-institutes:grid.440785.a
159 schema:familyName Shen
160 schema:givenName Xiang-qian
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06
162 rdf:type schema:Person
163 sg:pub.10.1007/s10853-020-04667-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126917804
164 https://doi.org/10.1007/s10853-020-04667-7
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s10854-019-01585-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116067215
167 https://doi.org/10.1007/s10854-019-01585-6
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s11581-020-03612-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127895164
170 https://doi.org/10.1007/s11581-020-03612-7
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/s41467-018-07882-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110929190
173 https://doi.org/10.1038/s41467-018-07882-8
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/s41467-019-09061-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112576695
176 https://doi.org/10.1038/s41467-019-09061-9
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/s41565-020-0657-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1125501421
179 https://doi.org/10.1038/s41565-020-0657-x
180 rdf:type schema:CreativeWork
181 grid-institutes:None schema:alternateName Jiangsu Runchi Solar Material Technology Co., Ltd, 212218, Zhenjiang, China
182 schema:name Jiangsu Runchi Solar Material Technology Co., Ltd, 212218, Zhenjiang, China
183 rdf:type schema:Organization
184 grid-institutes:grid.263906.8 schema:alternateName Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, 400715, Chongqing, China
185 schema:name Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, 400715, Chongqing, China
186 rdf:type schema:Organization
187 grid-institutes:grid.440785.a schema:alternateName Institute for Advanced Materials, School of Materials Science and Technology, Jiangsu University, 212013, Zhenjiang, China
188 schema:name Institute for Advanced Materials, School of Materials Science and Technology, Jiangsu University, 212013, Zhenjiang, China
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...