Thermoelectric properties of Fe-substituted layered compound, LiCo1−xFexO2 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-21

AUTHORS

Mofasser Mallick, Kalpna Rajput, Satish Vitta

ABSTRACT

The layered compound LiCoO2 belonging to the ABO2 class exhibits a variety of interesting behaviors, and substitution adds a twist to the properties. Hence, the effect of partial substitution of Co+3 with Fe+3 on the high-temperature thermoelectric properties has been studied in detail. The X-ray diffraction patterns together with Rietveld refinement indicate formation of a single phase conforming to R3−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{-}{3} $$\end{document}m space group in all the three cases, LiCo1−xFexO2 with x = 0.01, 0.02, and 0.08. The electrical resistivity in all the compounds decreases by four orders of magnitude with increasing temperature from 300 to 1000 K, a semiconducting behavior. The Seebeck coefficient is found to be very high, >700 μV K−1 in all the cases, and increases with increasing temperature and Fe+3 substitution. The thermal conductivity, on the other hand, has been found to decrease with temperature in all the compounds from 3.5 W m−1 K−1 at room temperature to 1 W m−1 K−1 at 973 K, a consequence of phonon-phonon scattering. High resistivity of the compounds limits power factor indicating that carrier concentration and mobility need to be increased to realize a high figure-of-merit. More... »

PAGES

2651-2655

References to SciGraph publications

  • 2003-06-15. Atomic resolution of lithium ions in LiCoO2 in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11581-017-1978-0

    DOI

    http://dx.doi.org/10.1007/s11581-017-1978-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1054012416


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India", 
              "id": "http://www.grid.ac/institutes/grid.417971.d", 
              "name": [
                "Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mallick", 
            "givenName": "Mofasser", 
            "id": "sg:person.013516255266.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013516255266.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India", 
              "id": "http://www.grid.ac/institutes/grid.417971.d", 
              "name": [
                "Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rajput", 
            "givenName": "Kalpna", 
            "id": "sg:person.011110312735.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011110312735.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India", 
              "id": "http://www.grid.ac/institutes/grid.417971.d", 
              "name": [
                "Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vitta", 
            "givenName": "Satish", 
            "id": "sg:person.01325463133.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325463133.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmat922", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031702581", 
              "https://doi.org/10.1038/nmat922"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-01-21", 
        "datePublishedReg": "2017-01-21", 
        "description": "The layered compound LiCoO2 belonging to the ABO2 class exhibits a variety of interesting behaviors, and substitution adds a twist to the properties. Hence, the effect of partial substitution of Co+3 with Fe+3 on the high-temperature thermoelectric properties has been studied in detail. The X-ray diffraction patterns together with Rietveld refinement indicate formation of a single phase conforming to R3\u2212\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overset{-}{3} $$\\end{document}m space group in all the three cases, LiCo1\u2212xFexO2 with x\u00a0=\u00a00.01, 0.02, and 0.08. The electrical resistivity in all the compounds decreases by four orders of magnitude with increasing temperature from 300 to 1000\u00a0K, a semiconducting behavior. The Seebeck coefficient is found to be very high, >700\u00a0\u03bcV\u00a0K\u22121 in all the cases, and increases with increasing temperature and Fe+3 substitution. The thermal conductivity, on the other hand, has been found to decrease with temperature in all the compounds from 3.5\u00a0W\u00a0m\u22121\u00a0K\u22121 at room temperature to 1\u00a0W\u00a0m\u22121\u00a0K\u22121 at 973\u00a0K, a consequence of phonon-phonon scattering. High resistivity of the compounds limits power factor indicating that carrier concentration and mobility need to be increased to realize a high figure-of-merit.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11581-017-1978-0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041836", 
            "issn": [
              "0947-7047", 
              "1862-0760"
            ], 
            "name": "Ionics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "keywords": [
          "thermoelectric properties", 
          "X-ray diffraction patterns", 
          "carrier concentration", 
          "high figure", 
          "Seebeck coefficient", 
          "high-temperature thermoelectric properties", 
          "room temperature", 
          "diffraction patterns", 
          "semiconducting behavior", 
          "high resistivity", 
          "orders of magnitude", 
          "Rietveld refinement", 
          "single phase", 
          "electrical resistivity", 
          "thermal conductivity", 
          "power factor", 
          "resistivity", 
          "layered compound", 
          "properties", 
          "LiCoO2", 
          "conductivity", 
          "phonon-phonon scattering", 
          "temperature", 
          "partial substitution", 
          "mobility", 
          "merits", 
          "scattering", 
          "interesting behavior", 
          "Fe", 
          "figures", 
          "substitution", 
          "formation", 
          "concentration", 
          "variety", 
          "detail", 
          "phase", 
          "order", 
          "compounds", 
          "behavior", 
          "space group", 
          "magnitude", 
          "coefficient", 
          "effect", 
          "hand", 
          "refinement", 
          "class", 
          "patterns", 
          "decrease", 
          "twist", 
          "cases", 
          "compounds decreases", 
          "factors", 
          "group", 
          "consequences"
        ], 
        "name": "Thermoelectric properties of Fe-substituted layered compound, LiCo1\u2212xFexO2", 
        "pagination": "2651-2655", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1054012416"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11581-017-1978-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11581-017-1978-0", 
          "https://app.dimensions.ai/details/publication/pub.1054012416"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_725.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11581-017-1978-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11581-017-1978-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11581-017-1978-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11581-017-1978-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11581-017-1978-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    129 TRIPLES      21 PREDICATES      79 URIs      70 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11581-017-1978-0 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N490813810a2c42fca012baf587ebf48e
    4 schema:citation sg:pub.10.1038/nmat922
    5 schema:datePublished 2017-01-21
    6 schema:datePublishedReg 2017-01-21
    7 schema:description The layered compound LiCoO2 belonging to the ABO2 class exhibits a variety of interesting behaviors, and substitution adds a twist to the properties. Hence, the effect of partial substitution of Co+3 with Fe+3 on the high-temperature thermoelectric properties has been studied in detail. The X-ray diffraction patterns together with Rietveld refinement indicate formation of a single phase conforming to R3−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{-}{3} $$\end{document}m space group in all the three cases, LiCo1−xFexO2 with x = 0.01, 0.02, and 0.08. The electrical resistivity in all the compounds decreases by four orders of magnitude with increasing temperature from 300 to 1000 K, a semiconducting behavior. The Seebeck coefficient is found to be very high, >700 μV K−1 in all the cases, and increases with increasing temperature and Fe+3 substitution. The thermal conductivity, on the other hand, has been found to decrease with temperature in all the compounds from 3.5 W m−1 K−1 at room temperature to 1 W m−1 K−1 at 973 K, a consequence of phonon-phonon scattering. High resistivity of the compounds limits power factor indicating that carrier concentration and mobility need to be increased to realize a high figure-of-merit.
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N8d4512b1c7b344cba4cc46ddb0e91936
    11 Nc0342507f11a49a78f249e7062c49fd3
    12 sg:journal.1041836
    13 schema:keywords Fe
    14 LiCoO2
    15 Rietveld refinement
    16 Seebeck coefficient
    17 X-ray diffraction patterns
    18 behavior
    19 carrier concentration
    20 cases
    21 class
    22 coefficient
    23 compounds
    24 compounds decreases
    25 concentration
    26 conductivity
    27 consequences
    28 decrease
    29 detail
    30 diffraction patterns
    31 effect
    32 electrical resistivity
    33 factors
    34 figures
    35 formation
    36 group
    37 hand
    38 high figure
    39 high resistivity
    40 high-temperature thermoelectric properties
    41 interesting behavior
    42 layered compound
    43 magnitude
    44 merits
    45 mobility
    46 order
    47 orders of magnitude
    48 partial substitution
    49 patterns
    50 phase
    51 phonon-phonon scattering
    52 power factor
    53 properties
    54 refinement
    55 resistivity
    56 room temperature
    57 scattering
    58 semiconducting behavior
    59 single phase
    60 space group
    61 substitution
    62 temperature
    63 thermal conductivity
    64 thermoelectric properties
    65 twist
    66 variety
    67 schema:name Thermoelectric properties of Fe-substituted layered compound, LiCo1−xFexO2
    68 schema:pagination 2651-2655
    69 schema:productId N229899bfe0b44b2e95f2afe9a45c0f29
    70 N54270ee9e7b64d32ba3144f51a7a093f
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054012416
    72 https://doi.org/10.1007/s11581-017-1978-0
    73 schema:sdDatePublished 2022-12-01T06:35
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher N1bcc495811ec4a378c1e9b2d2775de85
    76 schema:url https://doi.org/10.1007/s11581-017-1978-0
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N037719ad58d44d6e8638dadf97674dac rdf:first sg:person.01325463133.20
    81 rdf:rest rdf:nil
    82 N1bcc495811ec4a378c1e9b2d2775de85 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N229899bfe0b44b2e95f2afe9a45c0f29 schema:name doi
    85 schema:value 10.1007/s11581-017-1978-0
    86 rdf:type schema:PropertyValue
    87 N490813810a2c42fca012baf587ebf48e rdf:first sg:person.013516255266.42
    88 rdf:rest Na5eb7931cfc34897bbc007f090b19f9f
    89 N54270ee9e7b64d32ba3144f51a7a093f schema:name dimensions_id
    90 schema:value pub.1054012416
    91 rdf:type schema:PropertyValue
    92 N8d4512b1c7b344cba4cc46ddb0e91936 schema:volumeNumber 23
    93 rdf:type schema:PublicationVolume
    94 Na5eb7931cfc34897bbc007f090b19f9f rdf:first sg:person.011110312735.79
    95 rdf:rest N037719ad58d44d6e8638dadf97674dac
    96 Nc0342507f11a49a78f249e7062c49fd3 schema:issueNumber 10
    97 rdf:type schema:PublicationIssue
    98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Engineering
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Materials Engineering
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1041836 schema:issn 0947-7047
    105 1862-0760
    106 schema:name Ionics
    107 schema:publisher Springer Nature
    108 rdf:type schema:Periodical
    109 sg:person.011110312735.79 schema:affiliation grid-institutes:grid.417971.d
    110 schema:familyName Rajput
    111 schema:givenName Kalpna
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011110312735.79
    113 rdf:type schema:Person
    114 sg:person.01325463133.20 schema:affiliation grid-institutes:grid.417971.d
    115 schema:familyName Vitta
    116 schema:givenName Satish
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325463133.20
    118 rdf:type schema:Person
    119 sg:person.013516255266.42 schema:affiliation grid-institutes:grid.417971.d
    120 schema:familyName Mallick
    121 schema:givenName Mofasser
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013516255266.42
    123 rdf:type schema:Person
    124 sg:pub.10.1038/nmat922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031702581
    125 https://doi.org/10.1038/nmat922
    126 rdf:type schema:CreativeWork
    127 grid-institutes:grid.417971.d schema:alternateName Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India
    128 schema:name Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India
    129 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...