Structural, magnetic and redox properties of a new cathode material for Li-ion batteries: the iron-based metal organic framework View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-07

AUTHORS

C. Combelles, M.-L. Doublet

ABSTRACT

The iron-based metal organic framework (MOF) presently studied is the first example of MOF showing a reversible electrochemical Li insertion with a very good cycling life. Its potential application as a cathode material in Li-ion battery is nevertheless curbed by a rather poor capacity of 70 mAh/g. To figure out the origin of this limited insertion, first-principles density functional theory (DFT)+U calculations were performed. The results show that FeIII{OH(BDC)} is a weak anti-ferromagnetic charge transfer insulator at T = 0 K with iron in the high-spin S = 5/2 state. In agreement with the absence of electronic de-localisation along the inorganic chains, lithium insertion leads to the stabilisation of a FeII/FeIII mixed-valence state of class I or II in the Robin–Day classification, whatever the Li sites considered in the calculations. Among these Li sites, the most probable site I (OH-Li) and site II (O=CO-Li) are shown to induce incompatible structural changes on the reduced Li0.5Fe{OH(BDC)} form that could be at the origin of the small capacity measured for this compound. More... »

PAGES

279-283

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11581-007-0179-7

DOI

http://dx.doi.org/10.1007/s11581-007-0179-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036897145


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Charles Gerhardt", 
          "id": "https://www.grid.ac/institutes/grid.462034.7", 
          "name": [
            "Institut Charles Gerhardt, CNRS-UMII-ENSCM-UMI, Universit\u00e9 Montpellier II, Place Eug\u00e8ne Bataillon, 34095, Montpellier Cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Combelles", 
        "givenName": "C.", 
        "id": "sg:person.012542776613.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012542776613.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Charles Gerhardt", 
          "id": "https://www.grid.ac/institutes/grid.462034.7", 
          "name": [
            "Institut Charles Gerhardt, CNRS-UMII-ENSCM-UMI, Universit\u00e9 Montpellier II, Place Eug\u00e8ne Bataillon, 34095, Montpellier Cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doublet", 
        "givenName": "M.-L.", 
        "id": "sg:person.014247162643.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247162643.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2006.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005188419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008708156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200605163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009414174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b200393g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012337840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1837571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021283991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(01)00676-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021433586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027719504", 
          "https://doi.org/10.1038/nature01650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027719504", 
          "https://doi.org/10.1038/nature01650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2004.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029721506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.035115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029766543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.035115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029766543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.235121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032739959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.235121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032739959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.5048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037724982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.5048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037724982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja049408c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039110846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja049408c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039110846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm035101l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055410353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm035101l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055410353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0262737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055830836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0262737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055830836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.r5467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060579033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.r5467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060579033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.16533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.16533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.1354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.1354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.6120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.6120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.115201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.115201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.195107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.195107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-07", 
    "datePublishedReg": "2008-07-01", 
    "description": "The iron-based metal organic framework (MOF) presently studied is the first example of MOF showing a reversible electrochemical Li insertion with a very good cycling life. Its potential application as a cathode material in Li-ion battery is nevertheless curbed by a rather poor capacity of 70 mAh/g. To figure out the origin of this limited insertion, first-principles density functional theory (DFT)+U calculations were performed. The results show that FeIII{OH(BDC)} is a weak anti-ferromagnetic charge transfer insulator at T = 0 K with iron in the high-spin S = 5/2 state. In agreement with the absence of electronic de-localisation along the inorganic chains, lithium insertion leads to the stabilisation of a FeII/FeIII mixed-valence state of class I or II in the Robin\u2013Day classification, whatever the Li sites considered in the calculations. Among these Li sites, the most probable site I (OH-Li) and site II (O=CO-Li) are shown to induce incompatible structural changes on the reduced Li0.5Fe{OH(BDC)} form that could be at the origin of the small capacity measured for this compound.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11581-007-0179-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4520445", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041836", 
        "issn": [
          "0947-7047", 
          "1862-0760"
        ], 
        "name": "Ionics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Structural, magnetic and redox properties of a new cathode material for Li-ion batteries: the iron-based metal organic framework", 
    "pagination": "279-283", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "afc39bb77f86c8597c9d05e7c423ad9cccc89f3a615e2ba4a9315d132a698395"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11581-007-0179-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036897145"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11581-007-0179-7", 
      "https://app.dimensions.ai/details/publication/pub.1036897145"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000591.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11581-007-0179-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11581-007-0179-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11581-007-0179-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11581-007-0179-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11581-007-0179-7'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11581-007-0179-7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb7aefbec279e41dc92bc91a4d88496dd
4 schema:citation sg:pub.10.1038/nature01650
5 https://doi.org/10.1002/anie.200605163
6 https://doi.org/10.1016/0927-0256(96)00008-0
7 https://doi.org/10.1016/j.electacta.2004.01.013
8 https://doi.org/10.1016/j.jpowsour.2006.01.015
9 https://doi.org/10.1016/s0378-7753(01)00676-0
10 https://doi.org/10.1021/cm035101l
11 https://doi.org/10.1021/ja0262737
12 https://doi.org/10.1021/ja049408c
13 https://doi.org/10.1039/b200393g
14 https://doi.org/10.1103/physrevb.23.5048
15 https://doi.org/10.1103/physrevb.44.943
16 https://doi.org/10.1103/physrevb.52.r5467
17 https://doi.org/10.1103/physrevb.54.11169
18 https://doi.org/10.1103/physrevb.54.16533
19 https://doi.org/10.1103/physrevb.56.1354
20 https://doi.org/10.1103/physrevb.59.1758
21 https://doi.org/10.1103/physrevb.59.6120
22 https://doi.org/10.1103/physrevb.70.235121
23 https://doi.org/10.1103/physrevb.73.115201
24 https://doi.org/10.1103/physrevb.73.195107
25 https://doi.org/10.1103/physrevb.75.035115
26 https://doi.org/10.1103/physrevlett.77.3865
27 https://doi.org/10.1149/1.1837571
28 schema:datePublished 2008-07
29 schema:datePublishedReg 2008-07-01
30 schema:description The iron-based metal organic framework (MOF) presently studied is the first example of MOF showing a reversible electrochemical Li insertion with a very good cycling life. Its potential application as a cathode material in Li-ion battery is nevertheless curbed by a rather poor capacity of 70 mAh/g. To figure out the origin of this limited insertion, first-principles density functional theory (DFT)+U calculations were performed. The results show that FeIII{OH(BDC)} is a weak anti-ferromagnetic charge transfer insulator at T = 0 K with iron in the high-spin S = 5/2 state. In agreement with the absence of electronic de-localisation along the inorganic chains, lithium insertion leads to the stabilisation of a FeII/FeIII mixed-valence state of class I or II in the Robin–Day classification, whatever the Li sites considered in the calculations. Among these Li sites, the most probable site I (OH-Li) and site II (O=CO-Li) are shown to induce incompatible structural changes on the reduced Li0.5Fe{OH(BDC)} form that could be at the origin of the small capacity measured for this compound.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N4824a81e8ae94788abeb5430d14eca0c
35 Nf9537eb41a964ca880806463bd55e6db
36 sg:journal.1041836
37 schema:name Structural, magnetic and redox properties of a new cathode material for Li-ion batteries: the iron-based metal organic framework
38 schema:pagination 279-283
39 schema:productId N45587ff447454203a3315d1b10110b5f
40 N66c6420f64124ac58ca3e30e267d85e8
41 Nb77819d70d284f759326ec69f06d7d17
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036897145
43 https://doi.org/10.1007/s11581-007-0179-7
44 schema:sdDatePublished 2019-04-10T20:09
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N872610b261c7429282640994c918d212
47 schema:url http://link.springer.com/10.1007%2Fs11581-007-0179-7
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N45587ff447454203a3315d1b10110b5f schema:name dimensions_id
52 schema:value pub.1036897145
53 rdf:type schema:PropertyValue
54 N4824a81e8ae94788abeb5430d14eca0c schema:volumeNumber 14
55 rdf:type schema:PublicationVolume
56 N66c6420f64124ac58ca3e30e267d85e8 schema:name readcube_id
57 schema:value afc39bb77f86c8597c9d05e7c423ad9cccc89f3a615e2ba4a9315d132a698395
58 rdf:type schema:PropertyValue
59 N872610b261c7429282640994c918d212 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Naaa9cde226a448a3ac47484c233c4a15 rdf:first sg:person.014247162643.07
62 rdf:rest rdf:nil
63 Nb77819d70d284f759326ec69f06d7d17 schema:name doi
64 schema:value 10.1007/s11581-007-0179-7
65 rdf:type schema:PropertyValue
66 Nb7aefbec279e41dc92bc91a4d88496dd rdf:first sg:person.012542776613.19
67 rdf:rest Naaa9cde226a448a3ac47484c233c4a15
68 Nf9537eb41a964ca880806463bd55e6db schema:issueNumber 4
69 rdf:type schema:PublicationIssue
70 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
71 schema:name Chemical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Chemistry (incl. Structural)
75 rdf:type schema:DefinedTerm
76 sg:grant.4520445 http://pending.schema.org/fundedItem sg:pub.10.1007/s11581-007-0179-7
77 rdf:type schema:MonetaryGrant
78 sg:journal.1041836 schema:issn 0947-7047
79 1862-0760
80 schema:name Ionics
81 rdf:type schema:Periodical
82 sg:person.012542776613.19 schema:affiliation https://www.grid.ac/institutes/grid.462034.7
83 schema:familyName Combelles
84 schema:givenName C.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012542776613.19
86 rdf:type schema:Person
87 sg:person.014247162643.07 schema:affiliation https://www.grid.ac/institutes/grid.462034.7
88 schema:familyName Doublet
89 schema:givenName M.-L.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247162643.07
91 rdf:type schema:Person
92 sg:pub.10.1038/nature01650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027719504
93 https://doi.org/10.1038/nature01650
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/anie.200605163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009414174
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.electacta.2004.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029721506
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.jpowsour.2006.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005188419
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0378-7753(01)00676-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021433586
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1021/cm035101l schema:sameAs https://app.dimensions.ai/details/publication/pub.1055410353
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1021/ja0262737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055830836
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1021/ja049408c schema:sameAs https://app.dimensions.ai/details/publication/pub.1039110846
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1039/b200393g schema:sameAs https://app.dimensions.ai/details/publication/pub.1012337840
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevb.23.5048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037724982
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevb.44.943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560298
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevb.52.r5467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060579033
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevb.54.16533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581926
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.56.1354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060585611
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevb.59.6120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591861
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevb.70.235121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032739959
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevb.73.115201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060616931
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.73.195107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060617536
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevb.75.035115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029766543
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1149/1.1837571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021283991
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.462034.7 schema:alternateName Institut Charles Gerhardt
142 schema:name Institut Charles Gerhardt, CNRS-UMII-ENSCM-UMI, Université Montpellier II, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...