Towards a thin films electrochromic device using NASICON electrolyte View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-11-28

AUTHORS

D. Horwat, J. F. Pierson, A. Billard

ABSTRACT

The optimisation of the morphology of WO3 thin films allowed a more efficient electrochromic colouring using Na+ ions than H+ ones. Therefore, sodium superionic conductor (Na3Zr2Si2PO12, NASICON) films may be used as electrolyte in inorganic electrochromic devices. In this paper, the structure, chemical composition, morphology and electrochromic properties of WO3, ZnO:Al and Na3Zr2Si2PO12 thin films were studied to develop a novel type of electrochromic device. WO3, ZnO:Al and Na3Zr2Si2PO12 thin films were deposited using reactive magnetron sputtering of tungsten, zinc and aluminium and Zr–Si and Na3PO4 targets, respectively. For transparent conductive oxide coatings, a correlation was established between the deposition parametres and the film’s structure, transmittance and electrical resistivity. Classical sputtering methods were not suitable for the deposition of NASICON films on large surface with homogenous composition. On the other hand, the use of high-frequency pulsed direct current generators allowed the deposition of amorphous films that crystallised after thermal annealing upon 700 °C in the Na3Zr2Si2PO12 structure. Amorphous films exhibited ionic conductivity close to 2 × 10−3 S cm−1. Finally, preliminary results related to the electrochromic performance of NASICON, WO3 and indium tin oxide devices were given. More... »

PAGES

227-233

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11581-007-0176-x

DOI

http://dx.doi.org/10.1007/s11581-007-0176-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011420520


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Science et G\u00e9nie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, CS14234, 54042, Nancy, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire de Science et G\u00e9nie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, CS14234, 54042, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horwat", 
        "givenName": "D.", 
        "id": "sg:person.011253426713.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011253426713.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Science et G\u00e9nie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, CS14234, 54042, Nancy, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire de Science et G\u00e9nie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, CS14234, 54042, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pierson", 
        "givenName": "J. F.", 
        "id": "sg:person.011554143473.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011554143473.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d\u2019Etude et de Recherche sur les Mat\u00e9riaux, les Proc\u00e9d\u00e9s et les Surfaces, Site de Montb\u00e9liard, UTBM, 90010, Belfort, France", 
          "id": "http://www.grid.ac/institutes/grid.23082.3b", 
          "name": [
            "Laboratoire d\u2019Etude et de Recherche sur les Mat\u00e9riaux, les Proc\u00e9d\u00e9s et les Surfaces, Site de Montb\u00e9liard, UTBM, 90010, Belfort, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Billard", 
        "givenName": "A.", 
        "id": "sg:person.011076177127.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011076177127.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02430410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031985649", 
          "https://doi.org/10.1007/bf02430410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jmse.0000011357.32981.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036378785", 
          "https://doi.org/10.1023/b:jmse.0000011357.32981.47"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-11-28", 
    "datePublishedReg": "2007-11-28", 
    "description": "The optimisation of the morphology of WO3 thin films allowed a more efficient electrochromic colouring using Na+ ions than H+ ones. Therefore, sodium superionic conductor (Na3Zr2Si2PO12, NASICON) films may be used as electrolyte in inorganic electrochromic devices. In this paper, the structure, chemical composition, morphology and electrochromic properties of WO3, ZnO:Al and Na3Zr2Si2PO12 thin films were studied to develop a novel type of electrochromic device. WO3, ZnO:Al and Na3Zr2Si2PO12 thin films were deposited using reactive magnetron sputtering of tungsten, zinc and aluminium and Zr\u2013Si and Na3PO4 targets, respectively. For transparent conductive oxide coatings, a correlation was established between the deposition parametres and the film\u2019s structure, transmittance and electrical resistivity. Classical sputtering methods were not suitable for the deposition of NASICON films on large surface with homogenous composition. On the other hand, the use of high-frequency pulsed direct current generators allowed the deposition of amorphous films that crystallised after thermal annealing upon 700\u00a0\u00b0C in the Na3Zr2Si2PO12 structure. Amorphous films exhibited ionic conductivity close to 2\u2009\u00d7\u200910\u22123\u00a0S cm\u22121. Finally, preliminary results related to the electrochromic performance of NASICON, WO3 and indium tin oxide devices were given.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11581-007-0176-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041836", 
        "issn": [
          "0947-7047", 
          "1862-0760"
        ], 
        "name": "Ionics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "electrochromic devices", 
      "thin films", 
      "transparent conductive oxide coatings", 
      "thin film electrochromic devices", 
      "amorphous films", 
      "Zr\u2013Si", 
      "reactive magnetron sputtering", 
      "WO3 thin films", 
      "indium tin oxide device", 
      "tin oxide device", 
      "direct current generator", 
      "oxide coatings", 
      "oxide devices", 
      "electrochromic properties", 
      "conductor film", 
      "electrochromic performance", 
      "magnetron sputtering", 
      "ionic conductivity", 
      "Nasicon films", 
      "sputtering method", 
      "NASICON electrolyte", 
      "film structure", 
      "thermal annealing", 
      "electrical resistivity", 
      "films", 
      "WO3", 
      "chemical composition", 
      "large surface", 
      "homogenous composition", 
      "current generator", 
      "devices", 
      "ZnO", 
      "novel type", 
      "deposition", 
      "coatings", 
      "structure", 
      "electrolyte", 
      "NASICON", 
      "morphology", 
      "sputtering", 
      "conductivity", 
      "ions", 
      "transmittance", 
      "annealing", 
      "aluminum", 
      "resistivity", 
      "composition", 
      "tungsten", 
      "generator", 
      "surface", 
      "al", 
      "optimization", 
      "preliminary results", 
      "zinc", 
      "properties", 
      "performance", 
      "parametres", 
      "method", 
      "results", 
      "one", 
      "use", 
      "types", 
      "hand", 
      "correlation", 
      "coloring", 
      "target", 
      "paper", 
      "efficient electrochromic colouring", 
      "electrochromic colouring", 
      "sodium superionic conductor (Na3Zr2Si2PO12, NASICON) films", 
      "superionic conductor (Na3Zr2Si2PO12, NASICON) films", 
      "inorganic electrochromic devices", 
      "Na3Zr2Si2PO12 thin films", 
      "Na3PO4 targets", 
      "conductive oxide coatings", 
      "deposition parametres", 
      "Classical sputtering methods", 
      "Na3Zr2Si2PO12 structure", 
      "films electrochromic device"
    ], 
    "name": "Towards a thin films electrochromic device using NASICON electrolyte", 
    "pagination": "227-233", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011420520"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11581-007-0176-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11581-007-0176-x", 
      "https://app.dimensions.ai/details/publication/pub.1011420520"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_443.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11581-007-0176-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11581-007-0176-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11581-007-0176-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11581-007-0176-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11581-007-0176-x'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      22 PREDICATES      106 URIs      96 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11581-007-0176-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N16049109ce664033ade7d403142bf21a
4 schema:citation sg:pub.10.1007/bf02430410
5 sg:pub.10.1023/b:jmse.0000011357.32981.47
6 schema:datePublished 2007-11-28
7 schema:datePublishedReg 2007-11-28
8 schema:description The optimisation of the morphology of WO3 thin films allowed a more efficient electrochromic colouring using Na+ ions than H+ ones. Therefore, sodium superionic conductor (Na3Zr2Si2PO12, NASICON) films may be used as electrolyte in inorganic electrochromic devices. In this paper, the structure, chemical composition, morphology and electrochromic properties of WO3, ZnO:Al and Na3Zr2Si2PO12 thin films were studied to develop a novel type of electrochromic device. WO3, ZnO:Al and Na3Zr2Si2PO12 thin films were deposited using reactive magnetron sputtering of tungsten, zinc and aluminium and Zr–Si and Na3PO4 targets, respectively. For transparent conductive oxide coatings, a correlation was established between the deposition parametres and the film’s structure, transmittance and electrical resistivity. Classical sputtering methods were not suitable for the deposition of NASICON films on large surface with homogenous composition. On the other hand, the use of high-frequency pulsed direct current generators allowed the deposition of amorphous films that crystallised after thermal annealing upon 700 °C in the Na3Zr2Si2PO12 structure. Amorphous films exhibited ionic conductivity close to 2 × 10−3 S cm−1. Finally, preliminary results related to the electrochromic performance of NASICON, WO3 and indium tin oxide devices were given.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N4207656e715f4acab442ebbbeadb9530
13 N710002f4c20f499f99d6af1e1710cc36
14 sg:journal.1041836
15 schema:keywords Classical sputtering methods
16 NASICON
17 NASICON electrolyte
18 Na3PO4 targets
19 Na3Zr2Si2PO12 structure
20 Na3Zr2Si2PO12 thin films
21 Nasicon films
22 WO3
23 WO3 thin films
24 ZnO
25 Zr–Si
26 al
27 aluminum
28 amorphous films
29 annealing
30 chemical composition
31 coatings
32 coloring
33 composition
34 conductive oxide coatings
35 conductivity
36 conductor film
37 correlation
38 current generator
39 deposition
40 deposition parametres
41 devices
42 direct current generator
43 efficient electrochromic colouring
44 electrical resistivity
45 electrochromic colouring
46 electrochromic devices
47 electrochromic performance
48 electrochromic properties
49 electrolyte
50 film structure
51 films
52 films electrochromic device
53 generator
54 hand
55 homogenous composition
56 indium tin oxide device
57 inorganic electrochromic devices
58 ionic conductivity
59 ions
60 large surface
61 magnetron sputtering
62 method
63 morphology
64 novel type
65 one
66 optimization
67 oxide coatings
68 oxide devices
69 paper
70 parametres
71 performance
72 preliminary results
73 properties
74 reactive magnetron sputtering
75 resistivity
76 results
77 sodium superionic conductor (Na3Zr2Si2PO12, NASICON) films
78 sputtering
79 sputtering method
80 structure
81 superionic conductor (Na3Zr2Si2PO12, NASICON) films
82 surface
83 target
84 thermal annealing
85 thin film electrochromic devices
86 thin films
87 tin oxide device
88 transmittance
89 transparent conductive oxide coatings
90 tungsten
91 types
92 use
93 zinc
94 schema:name Towards a thin films electrochromic device using NASICON electrolyte
95 schema:pagination 227-233
96 schema:productId N6e8311d5fec545a9b279aa8573149985
97 Nec0bb66262c9444e8d25f675bb5cfbf6
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011420520
99 https://doi.org/10.1007/s11581-007-0176-x
100 schema:sdDatePublished 2021-11-01T18:10
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher Ne8e10b0558164df38c81ddf3d2099b8d
103 schema:url https://doi.org/10.1007/s11581-007-0176-x
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N16049109ce664033ade7d403142bf21a rdf:first sg:person.011253426713.36
108 rdf:rest N7e17ae59539a496c8608d72b009e211b
109 N4207656e715f4acab442ebbbeadb9530 schema:issueNumber 3
110 rdf:type schema:PublicationIssue
111 N6e8311d5fec545a9b279aa8573149985 schema:name doi
112 schema:value 10.1007/s11581-007-0176-x
113 rdf:type schema:PropertyValue
114 N710002f4c20f499f99d6af1e1710cc36 schema:volumeNumber 14
115 rdf:type schema:PublicationVolume
116 N7e17ae59539a496c8608d72b009e211b rdf:first sg:person.011554143473.68
117 rdf:rest N96ccb35876b641bc9ed430ba1f2a4e10
118 N96ccb35876b641bc9ed430ba1f2a4e10 rdf:first sg:person.011076177127.50
119 rdf:rest rdf:nil
120 Ne8e10b0558164df38c81ddf3d2099b8d schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 Nec0bb66262c9444e8d25f675bb5cfbf6 schema:name dimensions_id
123 schema:value pub.1011420520
124 rdf:type schema:PropertyValue
125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
126 schema:name Engineering
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
129 schema:name Materials Engineering
130 rdf:type schema:DefinedTerm
131 sg:journal.1041836 schema:issn 0947-7047
132 1862-0760
133 schema:name Ionics
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.011076177127.50 schema:affiliation grid-institutes:grid.23082.3b
137 schema:familyName Billard
138 schema:givenName A.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011076177127.50
140 rdf:type schema:Person
141 sg:person.011253426713.36 schema:affiliation grid-institutes:None
142 schema:familyName Horwat
143 schema:givenName D.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011253426713.36
145 rdf:type schema:Person
146 sg:person.011554143473.68 schema:affiliation grid-institutes:None
147 schema:familyName Pierson
148 schema:givenName J. F.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011554143473.68
150 rdf:type schema:Person
151 sg:pub.10.1007/bf02430410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031985649
152 https://doi.org/10.1007/bf02430410
153 rdf:type schema:CreativeWork
154 sg:pub.10.1023/b:jmse.0000011357.32981.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036378785
155 https://doi.org/10.1023/b:jmse.0000011357.32981.47
156 rdf:type schema:CreativeWork
157 grid-institutes:None schema:alternateName Laboratoire de Science et Génie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, CS14234, 54042, Nancy, France
158 schema:name Laboratoire de Science et Génie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, CS14234, 54042, Nancy, France
159 rdf:type schema:Organization
160 grid-institutes:grid.23082.3b schema:alternateName Laboratoire d’Etude et de Recherche sur les Matériaux, les Procédés et les Surfaces, Site de Montbéliard, UTBM, 90010, Belfort, France
161 schema:name Laboratoire d’Etude et de Recherche sur les Matériaux, les Procédés et les Surfaces, Site de Montbéliard, UTBM, 90010, Belfort, France
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...