Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO–Au sensing electrode View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-09-22

AUTHORS

Vladimir V. Plashnitsa, Taro Ueda, Perumal Elumalai, Toshikazu Kawaguchi, Norio Miura

ABSTRACT

The nanostructured thin NiO films with the thicknesses of 30–180 nm were examined as a sensing electrode (SE) for the planar mixed-potential-type yttria-stabilized zirconia (YSZ)-based NO2 sensor. The sensing characteristics were examined in the temperature range of 600–800 °C under the wet condition (5 vol.% water vapor). Among the NiO-SEs tested, the 60 nm-thick NiO-SE sintered at 1,000 °C was found to give the highest NO2 sensitivity in the NO2 concentration range of 50–400 ppm accompanying with fast response/recovery at the operating temperatures of 600–700 °C. The high NO2 sensitivity was attributed to the high catalytic activity for both electrochemical reactions of O2 and NO2 at the interface of NiO-SE/YSZ. The ultrathin gold layer with the thickness of about 60 nm was additionally formed on the 60 nm-thick NiO-SE to fabricate the laminated-type (60 nm NiO/60 nm Au)-SE. It was demonstrated that the use of this laminated (NiO–Au)-SE improved both the sensitivity and the selectivity to NO2. More... »

PAGES

15-25

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11581-007-0158-z

DOI

http://dx.doi.org/10.1007/s11581-007-0158-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034351432


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Art, Science and Technology Center for Cooperative Research, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Art, Science and Technology Center for Cooperative Research, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plashnitsa", 
        "givenName": "Vladimir V.", 
        "id": "sg:person.01214732507.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214732507.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueda", 
        "givenName": "Taro", 
        "id": "sg:person.013736355642.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013736355642.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Art, Science and Technology Center for Cooperative Research, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Art, Science and Technology Center for Cooperative Research, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elumalai", 
        "givenName": "Perumal", 
        "id": "sg:person.01133474124.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133474124.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Art, Science and Technology Center for Cooperative Research, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Art, Science and Technology Center for Cooperative Research, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawaguchi", 
        "givenName": "Toshikazu", 
        "id": "sg:person.0605133345.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605133345.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Art, Science and Technology Center for Cooperative Research, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Art, Science and Technology Center for Cooperative Research, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miura", 
        "givenName": "Norio", 
        "id": "sg:person.016401254007.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016401254007.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02375775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051350995", 
          "https://doi.org/10.1007/bf02375775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00774716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048979031", 
          "https://doi.org/10.1007/bf00774716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02377996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035620419", 
          "https://doi.org/10.1007/bf02377996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019073723384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010241119", 
          "https://doi.org/10.1023/a:1019073723384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11581-006-0063-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032613644", 
          "https://doi.org/10.1007/s11581-006-0063-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-09-22", 
    "datePublishedReg": "2007-09-22", 
    "description": "The nanostructured thin NiO films with the thicknesses of 30\u2013180\u00a0nm were examined as a sensing electrode (SE) for the planar mixed-potential-type yttria-stabilized zirconia (YSZ)-based NO2 sensor. The sensing characteristics were examined in the temperature range of 600\u2013800\u00a0\u00b0C under the wet condition (5\u00a0vol.% water vapor). Among the NiO-SEs tested, the 60 nm-thick NiO-SE sintered at 1,000\u00a0\u00b0C was found to give the highest NO2 sensitivity in the NO2 concentration range of 50\u2013400\u00a0ppm accompanying with fast response/recovery at the operating temperatures of 600\u2013700\u00a0\u00b0C. The high NO2 sensitivity was attributed to the high catalytic activity for both electrochemical reactions of O2 and NO2 at the interface of NiO-SE/YSZ. The ultrathin gold layer with the thickness of about 60\u00a0nm was additionally formed on the 60 nm-thick NiO-SE to fabricate the laminated-type (60\u00a0nm NiO/60\u00a0nm Au)-SE. It was demonstrated that the use of this laminated (NiO\u2013Au)-SE improved both the sensitivity and the selectivity to NO2.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11581-007-0158-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041836", 
        "issn": [
          "0947-7047", 
          "1862-0760"
        ], 
        "name": "Ionics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "high NO2 sensitivity", 
      "sensing electrodes", 
      "NiO-SE", 
      "type yttria-stabilized zirconia", 
      "high catalytic activity", 
      "NO2 sensor", 
      "NO2 sensitivity", 
      "fast response/recovery", 
      "ultrathin gold layer", 
      "electrochemical reactions", 
      "yttria-stabilized zirconia", 
      "catalytic activity", 
      "ultrathin NiO", 
      "response/recovery", 
      "NiO\u2013Au", 
      "concentration range", 
      "NiO films", 
      "gold layer", 
      "NO2 concentration range", 
      "electrode", 
      "thin NiO films", 
      "NiO", 
      "operating temperature", 
      "zirconia", 
      "NO2", 
      "temperature range", 
      "selectivity", 
      "YSZ", 
      "reaction", 
      "wet conditions", 
      "O2", 
      "films", 
      "sensors", 
      "ppm", 
      "thickness", 
      "range", 
      "sensitivity", 
      "temperature", 
      "interface", 
      "layer", 
      "activity", 
      "recovery", 
      "conditions", 
      "characteristics", 
      "use"
    ], 
    "name": "Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO\u2013Au sensing electrode", 
    "pagination": "15-25", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034351432"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11581-007-0158-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11581-007-0158-z", 
      "https://app.dimensions.ai/details/publication/pub.1034351432"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_445.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11581-007-0158-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11581-007-0158-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11581-007-0158-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11581-007-0158-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11581-007-0158-z'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      74 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11581-007-0158-z schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Nc113565c5d004e24b5f62bb8428b2fd0
4 schema:citation sg:pub.10.1007/bf00774716
5 sg:pub.10.1007/bf02375775
6 sg:pub.10.1007/bf02377996
7 sg:pub.10.1007/s11581-006-0063-x
8 sg:pub.10.1023/a:1019073723384
9 schema:datePublished 2007-09-22
10 schema:datePublishedReg 2007-09-22
11 schema:description The nanostructured thin NiO films with the thicknesses of 30–180 nm were examined as a sensing electrode (SE) for the planar mixed-potential-type yttria-stabilized zirconia (YSZ)-based NO2 sensor. The sensing characteristics were examined in the temperature range of 600–800 °C under the wet condition (5 vol.% water vapor). Among the NiO-SEs tested, the 60 nm-thick NiO-SE sintered at 1,000 °C was found to give the highest NO2 sensitivity in the NO2 concentration range of 50–400 ppm accompanying with fast response/recovery at the operating temperatures of 600–700 °C. The high NO2 sensitivity was attributed to the high catalytic activity for both electrochemical reactions of O2 and NO2 at the interface of NiO-SE/YSZ. The ultrathin gold layer with the thickness of about 60 nm was additionally formed on the 60 nm-thick NiO-SE to fabricate the laminated-type (60 nm NiO/60 nm Au)-SE. It was demonstrated that the use of this laminated (NiO–Au)-SE improved both the sensitivity and the selectivity to NO2.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N02b8b17377f440268b73313fd847ffda
15 N7f8dbe685a0c48bc87cb583f8e93b8fb
16 sg:journal.1041836
17 schema:keywords NO2
18 NO2 concentration range
19 NO2 sensitivity
20 NO2 sensor
21 NiO
22 NiO films
23 NiO-SE
24 NiO–Au
25 O2
26 YSZ
27 activity
28 catalytic activity
29 characteristics
30 concentration range
31 conditions
32 electrochemical reactions
33 electrode
34 fast response/recovery
35 films
36 gold layer
37 high NO2 sensitivity
38 high catalytic activity
39 interface
40 layer
41 operating temperature
42 ppm
43 range
44 reaction
45 recovery
46 response/recovery
47 selectivity
48 sensing electrodes
49 sensitivity
50 sensors
51 temperature
52 temperature range
53 thickness
54 thin NiO films
55 type yttria-stabilized zirconia
56 ultrathin NiO
57 ultrathin gold layer
58 use
59 wet conditions
60 yttria-stabilized zirconia
61 zirconia
62 schema:name Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO–Au sensing electrode
63 schema:pagination 15-25
64 schema:productId N28c1b21e323943c3bb55606ed15fe49f
65 N3726b04178304c0aa5675b67aeabe36f
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034351432
67 https://doi.org/10.1007/s11581-007-0158-z
68 schema:sdDatePublished 2022-09-02T15:52
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nb69f184a67d24f6e8268862545a6233a
71 schema:url https://doi.org/10.1007/s11581-007-0158-z
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N02b8b17377f440268b73313fd847ffda schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N07abf6386c8c40b895674dea2e5e9226 rdf:first sg:person.016401254007.22
78 rdf:rest rdf:nil
79 N28c1b21e323943c3bb55606ed15fe49f schema:name doi
80 schema:value 10.1007/s11581-007-0158-z
81 rdf:type schema:PropertyValue
82 N3726b04178304c0aa5675b67aeabe36f schema:name dimensions_id
83 schema:value pub.1034351432
84 rdf:type schema:PropertyValue
85 N3a2c975b21274de7a92373f0a5cf1dc8 rdf:first sg:person.01133474124.08
86 rdf:rest Nb5ac2b9fcdf04a3c812084c59aedd5b1
87 N7f8dbe685a0c48bc87cb583f8e93b8fb schema:volumeNumber 14
88 rdf:type schema:PublicationVolume
89 Nb5ac2b9fcdf04a3c812084c59aedd5b1 rdf:first sg:person.0605133345.90
90 rdf:rest N07abf6386c8c40b895674dea2e5e9226
91 Nb69f184a67d24f6e8268862545a6233a schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nc113565c5d004e24b5f62bb8428b2fd0 rdf:first sg:person.01214732507.24
94 rdf:rest Ncd2c751fddf94200881cebc2e4fdf90a
95 Ncd2c751fddf94200881cebc2e4fdf90a rdf:first sg:person.013736355642.48
96 rdf:rest N3a2c975b21274de7a92373f0a5cf1dc8
97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
98 schema:name Engineering
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
101 schema:name Chemical Engineering
102 rdf:type schema:DefinedTerm
103 sg:journal.1041836 schema:issn 0947-7047
104 1862-0760
105 schema:name Ionics
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 sg:person.01133474124.08 schema:affiliation grid-institutes:grid.177174.3
109 schema:familyName Elumalai
110 schema:givenName Perumal
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133474124.08
112 rdf:type schema:Person
113 sg:person.01214732507.24 schema:affiliation grid-institutes:grid.177174.3
114 schema:familyName Plashnitsa
115 schema:givenName Vladimir V.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214732507.24
117 rdf:type schema:Person
118 sg:person.013736355642.48 schema:affiliation grid-institutes:grid.177174.3
119 schema:familyName Ueda
120 schema:givenName Taro
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013736355642.48
122 rdf:type schema:Person
123 sg:person.016401254007.22 schema:affiliation grid-institutes:grid.177174.3
124 schema:familyName Miura
125 schema:givenName Norio
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016401254007.22
127 rdf:type schema:Person
128 sg:person.0605133345.90 schema:affiliation grid-institutes:grid.177174.3
129 schema:familyName Kawaguchi
130 schema:givenName Toshikazu
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605133345.90
132 rdf:type schema:Person
133 sg:pub.10.1007/bf00774716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048979031
134 https://doi.org/10.1007/bf00774716
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf02375775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051350995
137 https://doi.org/10.1007/bf02375775
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bf02377996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035620419
140 https://doi.org/10.1007/bf02377996
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s11581-006-0063-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032613644
143 https://doi.org/10.1007/s11581-006-0063-x
144 rdf:type schema:CreativeWork
145 sg:pub.10.1023/a:1019073723384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010241119
146 https://doi.org/10.1023/a:1019073723384
147 rdf:type schema:CreativeWork
148 grid-institutes:grid.177174.3 schema:alternateName Art, Science and Technology Center for Cooperative Research, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan
149 Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan
150 schema:name Art, Science and Technology Center for Cooperative Research, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan
151 Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 816-8580, Kasuga-shi, Fukuoka, Japan
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...