Ontology type: schema:ScholarlyArticle Open Access: True
2009-09-01
AUTHORSMichael Kupper, Walter Schachermayer
ABSTRACTWe show that the only dynamic risk measure which is law invariant, time consistent and relevant is the entropic one. Moreover, a real valued function c on L∞(a, b) is normalized, strictly monotone, continuous, law invariant, time consistent and has the Fatou property if and only if it is of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c(X)=u^{-1} \circ\mathbb {E}[u(X)]}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u:(a, b) \to {\mathbb R}}$$\end{document} is a strictly increasing, continuous function. The proofs rely on a discrete version of the Skorohod embedding theorem. More... »
PAGES189-210
http://scigraph.springernature.com/pub.10.1007/s11579-009-0019-9
DOIhttp://dx.doi.org/10.1007/s11579-009-0019-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1021648094
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Commerce, Management, Tourism and Services",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Banking, Finance and Investment",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Vienna Institute of Finance, University of Vienna and Vienna University of Economics and Business Administration, Heiligenst\u00e4dter Strasse 46-48, 1190, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.10420.37",
"name": [
"Vienna Institute of Finance, University of Vienna and Vienna University of Economics and Business Administration, Heiligenst\u00e4dter Strasse 46-48, 1190, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Kupper",
"givenName": "Michael",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University Vienna, Nordbergstr. 15, 1090, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.10420.37",
"name": [
"University Vienna, Nordbergstr. 15, 1090, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Schachermayer",
"givenName": "Walter",
"id": "sg:person.010531035430.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010531035430.26"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/4-431-27233-x_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027806967",
"https://doi.org/10.1007/4-431-27233-x_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11579-008-0013-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020410774",
"https://doi.org/10.1007/s11579-008-0013-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-35513-7_17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049580082",
"https://doi.org/10.1007/978-3-540-35513-7_17"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-4-431-67891-5_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038137805",
"https://doi.org/10.1007/978-4-431-67891-5_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-017-0399-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012536247",
"https://doi.org/10.1007/978-94-017-0399-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10479-006-0132-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049475692",
"https://doi.org/10.1007/s10479-006-0132-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-04790-3_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006470847",
"https://doi.org/10.1007/978-3-662-04790-3_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00780-009-0119-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032979022",
"https://doi.org/10.1007/s00780-009-0119-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00780-006-0022-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040347963",
"https://doi.org/10.1007/s00780-006-0022-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/4-431-34342-3_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050430262",
"https://doi.org/10.1007/4-431-34342-3_4"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-09-01",
"datePublishedReg": "2009-09-01",
"description": "We show that the only dynamic risk measure which is law invariant, time consistent and relevant is the entropic one. Moreover, a real valued function c on L\u221e(a, b) is normalized, strictly monotone, continuous, law invariant, time consistent and has the Fatou property if and only if it is of the form \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${c(X)=u^{-1} \\circ\\mathbb {E}[u(X)]}$$\\end{document} , where \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${u:(a, b) \\to {\\mathbb R}}$$\\end{document} is a strictly increasing, continuous function. The proofs rely on a discrete version of the Skorohod embedding theorem.",
"genre": "article",
"id": "sg:pub.10.1007/s11579-009-0019-9",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136117",
"issn": [
"1862-9660",
"1862-9679"
],
"name": "Mathematics and Financial Economics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2"
}
],
"keywords": [
"law invariant",
"Fatou property",
"entropic one",
"consistent functions",
"dynamic risk measures",
"proof",
"measures",
"form",
"risk measures",
"one",
"embedding theorem",
"time",
"version",
"function c",
"representation results",
"properties",
"function",
"discrete version",
"results",
"theorem",
"continuous functions",
"invariants"
],
"name": "Representation results for law invariant time consistent functions",
"pagination": "189-210",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1021648094"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11579-009-0019-9"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11579-009-0019-9",
"https://app.dimensions.ai/details/publication/pub.1021648094"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:08",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_479.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11579-009-0019-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11579-009-0019-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11579-009-0019-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11579-009-0019-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11579-009-0019-9'
This table displays all metadata directly associated to this object as RDF triples.
128 TRIPLES
22 PREDICATES
57 URIs
39 LITERALS
6 BLANK NODES