Power spectral density and coherence analysis of Alzheimer’s EEG View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-06

AUTHORS

Ruofan Wang, Jiang Wang, Haitao Yu, Xile Wei, Chen Yang, Bin Deng

ABSTRACT

In this paper, we investigate the abnormalities of electroencephalograph (EEG) signals in the Alzheimer's disease (AD) by analyzing 16-scalp electrodes EEG signals and make a comparison with the normal controls. The power spectral density (PSD) which represents the power distribution of EEG series in the frequency domain is used to evaluate the abnormalities of AD brain. Spectrum analysis based on autoregressive Burg method shows that the relative PSD of AD group is increased in the theta frequency band while significantly reduced in the alpha2 frequency bands, particularly in parietal, temporal, and occipital areas. Furthermore, the coherence of two EEG series among different electrodes is analyzed in the alpha2 frequency band. It is demonstrated that the pair-wise coherence between different brain areas in AD group are remarkably decreased. Interestingly, this decrease of pair-wise electrodes is much more significant in inter-hemispheric areas than that in intra-hemispheric areas. Moreover, the linear cortico-cortical functional connectivity can be extracted based on coherence matrix, from which it is shown that the functional connections are obviously decreased, the same variation trend as relative PSD. In addition, we combine both features of the relative PSD and the normalized degree of functional network to discriminate AD patients from the normal controls by applying a support vector machine model in the alpha2 frequency band. It is indicated that the two groups can be clearly classified by the combined feature. Importantly, the accuracy of the classification is higher than that of any one feature. The obtained results show that analysis of PSD and coherence-based functional network can be taken as a potential comprehensive measure to distinguish AD patients from the normal, which may benefit our understanding of the disease. More... »

PAGES

291-304

Journal

TITLE

Cognitive Neurodynamics

ISSUE

3

VOLUME

9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11571-014-9325-x

DOI

http://dx.doi.org/10.1007/s11571-014-9325-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032495656

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25972978


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Electrical Engineering and Automation, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ruofan", 
        "id": "sg:person.01365745000.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365745000.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Electrical Engineering and Automation, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jiang", 
        "id": "sg:person.0642340700.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642340700.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Electrical Engineering and Automation, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Haitao", 
        "id": "sg:person.01146451327.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146451327.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Electrical Engineering and Automation, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Xile", 
        "id": "sg:person.014245450577.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014245450577.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Electrical Engineering and Automation, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Chen", 
        "id": "sg:person.01121335504.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121335504.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Electrical Engineering and Automation, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Bin", 
        "id": "sg:person.0602662342.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602662342.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0035673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000429929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1874440000802010052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000441913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpsycho.2007.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000485784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/alzrt100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002194624", 
          "https://doi.org/10.1186/alzrt100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003321082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroscience.2006.08.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005073397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4061/2011/927573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005432564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858409334423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005477187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858409334423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005477187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2007.05.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006790379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00702-008-0083-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007007330", 
          "https://doi.org/10.1007/s00702-008-0083-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0072240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007675226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0987-7053(01)00254-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007821037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.0141-08.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008598148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0404.2003.02067.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008971188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-4328(00)00261-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009466054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-014-9295-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011038838", 
          "https://doi.org/10.1007/s11571-014-9295-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-013-9274-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011405276", 
          "https://doi.org/10.1007/s11571-013-9274-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-008-9047-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011891380", 
          "https://doi.org/10.1007/s11571-008-9047-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpsycho.2007.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012028040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2005.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013106798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2007.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013192662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2004.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013713448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncom.2011.00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015360083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(94)90144-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015768902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4694(94)90144-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015768902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4896095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015897013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2005.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015929880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-7020-5307-8.00015-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017930030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.1030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018445577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019579803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpa.2005.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019916050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2005.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020873756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2005.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020873756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0197-4580(00)00153-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022227800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022342218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2004.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022421447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8760(03)00118-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023033157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8760(03)00118-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023033157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.05.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023088918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2004.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024153946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-010-9126-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025839669", 
          "https://doi.org/10.1007/s11571-010-9126-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000073633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026086372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2006.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027679149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/089198870001300101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028111403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/089198870001300101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028111403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0013788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030625972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1904-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639131", 
          "https://doi.org/10.1007/978-1-4757-1904-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1904-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639131", 
          "https://doi.org/10.1007/978-1-4757-1904-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023832305702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033446362", 
          "https://doi.org/10.1023/a:1023832305702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.06.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033869908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-4328(95)00214-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034293057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhj127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036199171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-014-9297-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036561013", 
          "https://doi.org/10.1007/s11571-014-9297-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(98)00076-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036986015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2008.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038480140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2006.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039217417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-012-9221-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039419436", 
          "https://doi.org/10.1007/s11571-012-9221-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041384090", 
          "https://doi.org/10.1038/nature02621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041384090", 
          "https://doi.org/10.1038/nature02621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pneurobio.2005.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043606994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pneurobio.2005.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043606994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-4694(97)00129-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043703768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005553931564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046246384", 
          "https://doi.org/10.1023/a:1005553931564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.euroneuro.2012.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048072686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-013-9247-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049729530", 
          "https://doi.org/10.1007/s11571-013-9247-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4061/2011/539621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049783673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(99)00013-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050310857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00702-003-0024-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051211232", 
          "https://doi.org/10.1007/s00702-003-0024-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2013.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051721926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2010.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053422841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/titb.2012.2230012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1550059412444970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064060356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1550059412444970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064060356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1192/bjp.166.1.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064172360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02842462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068158337", 
          "https://doi.org/10.1007/bf02842462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/156720510792231720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069188985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2011.6091504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078503742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2012.6346909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078682709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2012.6346909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078682709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078685631", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082821043", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "In this paper, we investigate the abnormalities of electroencephalograph (EEG) signals in the Alzheimer's disease (AD) by analyzing 16-scalp electrodes EEG signals and make a comparison with the normal controls. The power spectral density (PSD) which represents the power distribution of EEG series in the frequency domain is used to evaluate the abnormalities of AD brain. Spectrum analysis based on autoregressive Burg method shows that the relative PSD of AD group is increased in the theta frequency band while significantly reduced in the alpha2 frequency bands, particularly in parietal, temporal, and occipital areas. Furthermore, the coherence of two EEG series among different electrodes is analyzed in the alpha2 frequency band. It is demonstrated that the pair-wise coherence between different brain areas in AD group are remarkably decreased. Interestingly, this decrease of pair-wise electrodes is much more significant in inter-hemispheric areas than that in intra-hemispheric areas. Moreover, the linear cortico-cortical functional connectivity can be extracted based on coherence matrix, from which it is shown that the functional connections are obviously decreased, the same variation trend as relative PSD. In addition, we combine both features of the relative PSD and the normalized degree of functional network to discriminate AD patients from the normal controls by applying a support vector machine model in the alpha2 frequency band. It is indicated that the two groups can be clearly classified by the combined feature. Importantly, the accuracy of the classification is higher than that of any one feature. The obtained results show that analysis of PSD and coherence-based functional network can be taken as a potential comprehensive measure to distinguish AD patients from the normal, which may benefit our understanding of the disease. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11571-014-9325-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1038680", 
        "issn": [
          "1871-4080", 
          "1871-4099"
        ], 
        "name": "Cognitive Neurodynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Power spectral density and coherence analysis of Alzheimer\u2019s EEG", 
    "pagination": "291-304", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ace9687ec191e6b6f7db48dd60f529f555cd00ef7f5f9e611201593a1f26795"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25972978"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101306907"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11571-014-9325-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032495656"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11571-014-9325-x", 
      "https://app.dimensions.ai/details/publication/pub.1032495656"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11571-014-9325-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11571-014-9325-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11571-014-9325-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11571-014-9325-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11571-014-9325-x'


 

This table displays all metadata directly associated to this object as RDF triples.

333 TRIPLES      21 PREDICATES      101 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11571-014-9325-x schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N6f0651761fc24287b3db52326abbd071
4 schema:citation sg:pub.10.1007/978-1-4757-1904-8
5 sg:pub.10.1007/bf02842462
6 sg:pub.10.1007/s00702-003-0024-8
7 sg:pub.10.1007/s00702-008-0083-y
8 sg:pub.10.1007/s11571-008-9047-z
9 sg:pub.10.1007/s11571-010-9126-9
10 sg:pub.10.1007/s11571-012-9221-1
11 sg:pub.10.1007/s11571-013-9247-z
12 sg:pub.10.1007/s11571-013-9274-9
13 sg:pub.10.1007/s11571-014-9295-z
14 sg:pub.10.1007/s11571-014-9297-x
15 sg:pub.10.1023/a:1005553931564
16 sg:pub.10.1023/a:1023832305702
17 sg:pub.10.1038/nature02621
18 sg:pub.10.1186/alzrt100
19 https://app.dimensions.ai/details/publication/pub.1078685631
20 https://app.dimensions.ai/details/publication/pub.1082821043
21 https://doi.org/10.1002/hbm.1030
22 https://doi.org/10.1016/0013-4694(94)90144-9
23 https://doi.org/10.1016/0166-4328(95)00214-6
24 https://doi.org/10.1016/b978-0-7020-5307-8.00015-6
25 https://doi.org/10.1016/j.bpa.2005.07.010
26 https://doi.org/10.1016/j.clinph.2004.01.001
27 https://doi.org/10.1016/j.clinph.2004.09.022
28 https://doi.org/10.1016/j.clinph.2005.04.001
29 https://doi.org/10.1016/j.clinph.2005.10.017
30 https://doi.org/10.1016/j.clinph.2005.12.022
31 https://doi.org/10.1016/j.clinph.2006.09.007
32 https://doi.org/10.1016/j.clinph.2007.05.070
33 https://doi.org/10.1016/j.clinph.2007.12.002
34 https://doi.org/10.1016/j.clinph.2008.11.012
35 https://doi.org/10.1016/j.clinph.2010.09.008
36 https://doi.org/10.1016/j.euroneuro.2012.11.010
37 https://doi.org/10.1016/j.ijpsycho.2007.05.002
38 https://doi.org/10.1016/j.ijpsycho.2007.11.002
39 https://doi.org/10.1016/j.neurobiolaging.2004.03.008
40 https://doi.org/10.1016/j.neurobiolaging.2013.02.020
41 https://doi.org/10.1016/j.neuroimage.2006.05.033
42 https://doi.org/10.1016/j.neuroimage.2009.06.056
43 https://doi.org/10.1016/j.neuroimage.2009.10.003
44 https://doi.org/10.1016/j.neuroimage.2009.12.011
45 https://doi.org/10.1016/j.neuron.2006.09.020
46 https://doi.org/10.1016/j.neuroscience.2006.08.049
47 https://doi.org/10.1016/j.pneurobio.2005.10.003
48 https://doi.org/10.1016/s0013-4694(97)00129-6
49 https://doi.org/10.1016/s0166-4328(00)00261-8
50 https://doi.org/10.1016/s0167-8760(03)00118-1
51 https://doi.org/10.1016/s0197-4580(00)00153-6
52 https://doi.org/10.1016/s0987-7053(01)00254-4
53 https://doi.org/10.1016/s1388-2457(98)00076-5
54 https://doi.org/10.1016/s1388-2457(99)00013-9
55 https://doi.org/10.1034/j.1600-0404.2003.02067.x
56 https://doi.org/10.1063/1.4896095
57 https://doi.org/10.1093/cercor/bhj127
58 https://doi.org/10.1109/embc.2012.6346909
59 https://doi.org/10.1109/iembs.2011.6091504
60 https://doi.org/10.1109/titb.2012.2230012
61 https://doi.org/10.1159/000073633
62 https://doi.org/10.1177/089198870001300101
63 https://doi.org/10.1177/1073858409334423
64 https://doi.org/10.1177/1550059412444970
65 https://doi.org/10.1192/bjp.166.1.4
66 https://doi.org/10.1371/journal.pcbi.1000100
67 https://doi.org/10.1371/journal.pone.0013788
68 https://doi.org/10.1371/journal.pone.0035673
69 https://doi.org/10.1371/journal.pone.0072240
70 https://doi.org/10.1523/jneurosci.0141-08.2008
71 https://doi.org/10.2174/156720510792231720
72 https://doi.org/10.2174/1874440000802010052
73 https://doi.org/10.3389/fncom.2011.00004
74 https://doi.org/10.4061/2011/539621
75 https://doi.org/10.4061/2011/927573
76 schema:datePublished 2015-06
77 schema:datePublishedReg 2015-06-01
78 schema:description In this paper, we investigate the abnormalities of electroencephalograph (EEG) signals in the Alzheimer's disease (AD) by analyzing 16-scalp electrodes EEG signals and make a comparison with the normal controls. The power spectral density (PSD) which represents the power distribution of EEG series in the frequency domain is used to evaluate the abnormalities of AD brain. Spectrum analysis based on autoregressive Burg method shows that the relative PSD of AD group is increased in the theta frequency band while significantly reduced in the alpha2 frequency bands, particularly in parietal, temporal, and occipital areas. Furthermore, the coherence of two EEG series among different electrodes is analyzed in the alpha2 frequency band. It is demonstrated that the pair-wise coherence between different brain areas in AD group are remarkably decreased. Interestingly, this decrease of pair-wise electrodes is much more significant in inter-hemispheric areas than that in intra-hemispheric areas. Moreover, the linear cortico-cortical functional connectivity can be extracted based on coherence matrix, from which it is shown that the functional connections are obviously decreased, the same variation trend as relative PSD. In addition, we combine both features of the relative PSD and the normalized degree of functional network to discriminate AD patients from the normal controls by applying a support vector machine model in the alpha2 frequency band. It is indicated that the two groups can be clearly classified by the combined feature. Importantly, the accuracy of the classification is higher than that of any one feature. The obtained results show that analysis of PSD and coherence-based functional network can be taken as a potential comprehensive measure to distinguish AD patients from the normal, which may benefit our understanding of the disease.
79 schema:genre research_article
80 schema:inLanguage en
81 schema:isAccessibleForFree true
82 schema:isPartOf N4712e74f3d3b4cc68dffc5f8c0f4ff1d
83 Ne167334cb4f34c7ca98a65fa88fa4b1c
84 sg:journal.1038680
85 schema:name Power spectral density and coherence analysis of Alzheimer’s EEG
86 schema:pagination 291-304
87 schema:productId N333d57d561de4d5c81e945ae1d4a4b79
88 N54bd48ca06ef4382ba0d94e50b0e8cc9
89 N60f1463ac46c4776a248805ad756a7ec
90 N69edc269adc0493e954645e543bc3977
91 Nafbb383b7b0f489e8361a832df838a8f
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032495656
93 https://doi.org/10.1007/s11571-014-9325-x
94 schema:sdDatePublished 2019-04-10T19:59
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Nbf5e88dfbb024f07aaaa0c0d1ded5f9f
97 schema:url http://link.springer.com/10.1007%2Fs11571-014-9325-x
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N257eeae40cab44249c1d39aadb7b23f7 rdf:first sg:person.01121335504.38
102 rdf:rest N7ed8211087d14a2faeeb6a79b2efd2b4
103 N333d57d561de4d5c81e945ae1d4a4b79 schema:name pubmed_id
104 schema:value 25972978
105 rdf:type schema:PropertyValue
106 N4712e74f3d3b4cc68dffc5f8c0f4ff1d schema:volumeNumber 9
107 rdf:type schema:PublicationVolume
108 N54bd48ca06ef4382ba0d94e50b0e8cc9 schema:name readcube_id
109 schema:value 9ace9687ec191e6b6f7db48dd60f529f555cd00ef7f5f9e611201593a1f26795
110 rdf:type schema:PropertyValue
111 N60f1463ac46c4776a248805ad756a7ec schema:name doi
112 schema:value 10.1007/s11571-014-9325-x
113 rdf:type schema:PropertyValue
114 N69edc269adc0493e954645e543bc3977 schema:name nlm_unique_id
115 schema:value 101306907
116 rdf:type schema:PropertyValue
117 N6f0651761fc24287b3db52326abbd071 rdf:first sg:person.01365745000.95
118 rdf:rest N704dfd189da247d9854c0111e527d2df
119 N6fccb219493f47cdacd7d4c37c076e3a rdf:first sg:person.01146451327.67
120 rdf:rest N7b2be8976a5c4774a3352f1322ed47ed
121 N704dfd189da247d9854c0111e527d2df rdf:first sg:person.0642340700.71
122 rdf:rest N6fccb219493f47cdacd7d4c37c076e3a
123 N7b2be8976a5c4774a3352f1322ed47ed rdf:first sg:person.014245450577.41
124 rdf:rest N257eeae40cab44249c1d39aadb7b23f7
125 N7ed8211087d14a2faeeb6a79b2efd2b4 rdf:first sg:person.0602662342.16
126 rdf:rest rdf:nil
127 Nafbb383b7b0f489e8361a832df838a8f schema:name dimensions_id
128 schema:value pub.1032495656
129 rdf:type schema:PropertyValue
130 Nbf5e88dfbb024f07aaaa0c0d1ded5f9f schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 Ne167334cb4f34c7ca98a65fa88fa4b1c schema:issueNumber 3
133 rdf:type schema:PublicationIssue
134 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
135 schema:name Medical and Health Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
138 schema:name Neurosciences
139 rdf:type schema:DefinedTerm
140 sg:journal.1038680 schema:issn 1871-4080
141 1871-4099
142 schema:name Cognitive Neurodynamics
143 rdf:type schema:Periodical
144 sg:person.01121335504.38 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
145 schema:familyName Yang
146 schema:givenName Chen
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121335504.38
148 rdf:type schema:Person
149 sg:person.01146451327.67 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
150 schema:familyName Yu
151 schema:givenName Haitao
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146451327.67
153 rdf:type schema:Person
154 sg:person.01365745000.95 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
155 schema:familyName Wang
156 schema:givenName Ruofan
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365745000.95
158 rdf:type schema:Person
159 sg:person.014245450577.41 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
160 schema:familyName Wei
161 schema:givenName Xile
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014245450577.41
163 rdf:type schema:Person
164 sg:person.0602662342.16 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
165 schema:familyName Deng
166 schema:givenName Bin
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602662342.16
168 rdf:type schema:Person
169 sg:person.0642340700.71 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
170 schema:familyName Wang
171 schema:givenName Jiang
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642340700.71
173 rdf:type schema:Person
174 sg:pub.10.1007/978-1-4757-1904-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031639131
175 https://doi.org/10.1007/978-1-4757-1904-8
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/bf02842462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068158337
178 https://doi.org/10.1007/bf02842462
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00702-003-0024-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051211232
181 https://doi.org/10.1007/s00702-003-0024-8
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00702-008-0083-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007007330
184 https://doi.org/10.1007/s00702-008-0083-y
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s11571-008-9047-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011891380
187 https://doi.org/10.1007/s11571-008-9047-z
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s11571-010-9126-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025839669
190 https://doi.org/10.1007/s11571-010-9126-9
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s11571-012-9221-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039419436
193 https://doi.org/10.1007/s11571-012-9221-1
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s11571-013-9247-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049729530
196 https://doi.org/10.1007/s11571-013-9247-z
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s11571-013-9274-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011405276
199 https://doi.org/10.1007/s11571-013-9274-9
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s11571-014-9295-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011038838
202 https://doi.org/10.1007/s11571-014-9295-z
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s11571-014-9297-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036561013
205 https://doi.org/10.1007/s11571-014-9297-x
206 rdf:type schema:CreativeWork
207 sg:pub.10.1023/a:1005553931564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046246384
208 https://doi.org/10.1023/a:1005553931564
209 rdf:type schema:CreativeWork
210 sg:pub.10.1023/a:1023832305702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033446362
211 https://doi.org/10.1023/a:1023832305702
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nature02621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041384090
214 https://doi.org/10.1038/nature02621
215 rdf:type schema:CreativeWork
216 sg:pub.10.1186/alzrt100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002194624
217 https://doi.org/10.1186/alzrt100
218 rdf:type schema:CreativeWork
219 https://app.dimensions.ai/details/publication/pub.1078685631 schema:CreativeWork
220 https://app.dimensions.ai/details/publication/pub.1082821043 schema:CreativeWork
221 https://doi.org/10.1002/hbm.1030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018445577
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/0013-4694(94)90144-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015768902
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/0166-4328(95)00214-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034293057
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/b978-0-7020-5307-8.00015-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017930030
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.bpa.2005.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019916050
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.clinph.2004.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013713448
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.clinph.2004.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022421447
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.clinph.2005.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020873756
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.clinph.2005.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015929880
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.clinph.2005.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013106798
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.clinph.2006.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027679149
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.clinph.2007.05.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006790379
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.clinph.2007.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013192662
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.clinph.2008.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038480140
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.clinph.2010.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053422841
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.euroneuro.2012.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048072686
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.ijpsycho.2007.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000485784
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.ijpsycho.2007.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012028040
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.neurobiolaging.2004.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024153946
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.neurobiolaging.2013.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051721926
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.neuroimage.2006.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023088918
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.neuroimage.2009.06.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033869908
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.neuroimage.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022342218
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/j.neuroimage.2009.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019579803
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1016/j.neuron.2006.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039217417
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1016/j.neuroscience.2006.08.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005073397
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1016/j.pneurobio.2005.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043606994
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1016/s0013-4694(97)00129-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043703768
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1016/s0166-4328(00)00261-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009466054
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1016/s0167-8760(03)00118-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023033157
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1016/s0197-4580(00)00153-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022227800
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1016/s0987-7053(01)00254-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007821037
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1016/s1388-2457(98)00076-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036986015
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1016/s1388-2457(99)00013-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050310857
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1034/j.1600-0404.2003.02067.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008971188
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1063/1.4896095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015897013
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1093/cercor/bhj127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036199171
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1109/embc.2012.6346909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078682709
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1109/iembs.2011.6091504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078503742
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1109/titb.2012.2230012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657248
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1159/000073633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026086372
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1177/089198870001300101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028111403
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1177/1073858409334423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005477187
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1177/1550059412444970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064060356
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1192/bjp.166.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064172360
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1371/journal.pcbi.1000100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003321082
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1371/journal.pone.0013788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030625972
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1371/journal.pone.0035673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000429929
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1371/journal.pone.0072240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007675226
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1523/jneurosci.0141-08.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008598148
320 rdf:type schema:CreativeWork
321 https://doi.org/10.2174/156720510792231720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069188985
322 rdf:type schema:CreativeWork
323 https://doi.org/10.2174/1874440000802010052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000441913
324 rdf:type schema:CreativeWork
325 https://doi.org/10.3389/fncom.2011.00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015360083
326 rdf:type schema:CreativeWork
327 https://doi.org/10.4061/2011/539621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049783673
328 rdf:type schema:CreativeWork
329 https://doi.org/10.4061/2011/927573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005432564
330 rdf:type schema:CreativeWork
331 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
332 schema:name School of Electrical Engineering and Automation, Tianjin University, Tianjin, China
333 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...