A novel in silico approach to identify potential therapeutic targets in human bacterial pathogens View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Umashankar Vetrivel, Gurunathan Subramanian, Sudarsanam Dorairaj

ABSTRACT

In recent years, genome-sequencing projects of pathogens and humans have revolutionized microbial drug target identification. Of the several known genomic strategies, subtractive genomics has been successfully utilized for identifying microbial drug targets. The present work demonstrates a novel genomics approach in which codon adaptation index (CAI), a measure used to predict the translational efficiency of a gene based on synonymous codon usage, is coupled with subtractive genomics approach for mining potential drug targets. The strategy adopted is demonstrated using respiratory pathogens, namely, Streptococcus pneumoniae and Haemophilus influenzae as examples. Our approach identified 8 potent target genes (Streptococcus pneumoniae-2, H. influenzae-6), which are functionally significant and also play key role in host-pathogen interactions. This approach facilitates swift identification of potential drug targets, thereby enabling the search for new inhibitors. These results underscore the utility of CAI for enhanced in silico drug target identification. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11568-011-9152-7) contains supplementary material, which is available to authorized users. More... »

PAGES

25-34

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11568-011-9152-7

DOI

http://dx.doi.org/10.1007/s11568-011-9152-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051813052

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23205162


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sankara Nethralaya", 
          "id": "https://www.grid.ac/institutes/grid.414795.a", 
          "name": [
            "Center of Bioinformatics, Vision Research Foundation, Sankara Nethralaya, 600 006, Chennai, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vetrivel", 
        "givenName": "Umashankar", 
        "id": "sg:person.01256164477.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256164477.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SRM University", 
          "id": "https://www.grid.ac/institutes/grid.412742.6", 
          "name": [
            "Department of Bioinformatics, SRM University, Ramapuram Campus, 600 089, Chennai, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Subramanian", 
        "givenName": "Gurunathan", 
        "id": "sg:person.01016522300.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016522300.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Madras", 
          "id": "https://www.grid.ac/institutes/grid.413015.2", 
          "name": [
            "Department of Advanced Zoology and Biotechnology, Loyola College, 600 034, Chennai, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dorairaj", 
        "givenName": "Sudarsanam", 
        "id": "sg:person.01064635500.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064635500.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0014-5793(98)00276-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000716680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.1.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001521131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0958-1669(99)00035-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001971254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.19.10268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003668202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(01)01914-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005262680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.182.15.4319-4327.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009343989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/15.3.1281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010536976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954636", 
          "https://doi.org/10.1038/nbt1010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954636", 
          "https://doi.org/10.1038/nbt1010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fmrre.2005.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014445270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2008-9-4-r70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016424517", 
          "https://doi.org/10.1186/gb-2008-9-4-r70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016768028", 
          "https://doi.org/10.1038/nbt1034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016768028", 
          "https://doi.org/10.1038/nbt1034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018284532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/jcsb.1000038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022869986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(97)01255-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026945821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.1998.00790.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028733624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.1998.00790.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028733624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(80)90260-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030789396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00178847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031890057", 
          "https://doi.org/10.1007/bf00178847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00178847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031890057", 
          "https://doi.org/10.1007/bf00178847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2005.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033650448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiolchem.2005.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033650448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0730515100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033908509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(82)90157-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034033311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(82)90157-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034033311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-4-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034795817", 
          "https://doi.org/10.1186/1752-0509-4-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(95)00233-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037852753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.1998.00711.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038240563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2007.05849.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040469226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044615528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkf546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044779086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00013542-199410000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051753552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00013542-199410000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051753552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.27833-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060397391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/sqb.1983.047.01.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060405443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1061217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7542800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062647490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.36.7.1504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062709846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21775/cimb.003.091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069252938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6026/97320630002062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073593811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6026/97320630004143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073594027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6026/97320630004278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073594057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075814153", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077010749", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077259368", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077287110", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077629620", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077814188", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078041874", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080033472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082116021", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082604934", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "In recent years, genome-sequencing projects of pathogens and humans have revolutionized microbial drug target identification. Of the several known genomic strategies, subtractive genomics has been successfully utilized for identifying microbial drug targets. The present work demonstrates a novel genomics approach in which codon adaptation index (CAI), a measure used to predict the translational efficiency of a gene based on synonymous codon usage, is coupled with subtractive genomics approach for mining potential drug targets. The strategy adopted is demonstrated using respiratory pathogens, namely, Streptococcus pneumoniae and Haemophilus influenzae as examples. Our approach identified 8 potent target genes (Streptococcus pneumoniae-2, H. influenzae-6), which are functionally significant and also play key role in host-pathogen interactions. This approach facilitates swift identification of potential drug targets, thereby enabling the search for new inhibitors. These results underscore the utility of CAI for enhanced in silico drug target identification.\nELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11568-011-9152-7) contains supplementary material, which is available to authorized users.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11568-011-9152-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1038392", 
        "issn": [
          "1877-6558", 
          "1877-6566"
        ], 
        "name": "The HUGO Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "A novel in silico approach to identify potential therapeutic targets in human bacterial pathogens", 
    "pagination": "25-34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f6cf190ea6425eb72a5aebe8a5e3373f4c45ffe56135c144f08bdea2efd9225d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23205162"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101530565"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11568-011-9152-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051813052"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11568-011-9152-7", 
      "https://app.dimensions.ai/details/publication/pub.1051813052"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11568-011-9152-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11568-011-9152-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11568-011-9152-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11568-011-9152-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11568-011-9152-7'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11568-011-9152-7 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 schema:author N6ad3e75b887f4a429955bd702aedbd46
4 schema:citation sg:pub.10.1007/bf00178847
5 sg:pub.10.1038/nbt1010
6 sg:pub.10.1038/nbt1034
7 sg:pub.10.1186/1752-0509-4-56
8 sg:pub.10.1186/gb-2008-9-4-r70
9 https://app.dimensions.ai/details/publication/pub.1075814153
10 https://app.dimensions.ai/details/publication/pub.1077010749
11 https://app.dimensions.ai/details/publication/pub.1077259368
12 https://app.dimensions.ai/details/publication/pub.1077287110
13 https://app.dimensions.ai/details/publication/pub.1077629620
14 https://app.dimensions.ai/details/publication/pub.1077814188
15 https://app.dimensions.ai/details/publication/pub.1078041874
16 https://app.dimensions.ai/details/publication/pub.1082116021
17 https://app.dimensions.ai/details/publication/pub.1082604934
18 https://doi.org/10.1016/0014-5793(95)00233-y
19 https://doi.org/10.1016/0022-2836(80)90260-0
20 https://doi.org/10.1016/0378-1119(82)90157-3
21 https://doi.org/10.1016/j.compbiolchem.2005.07.001
22 https://doi.org/10.1016/j.fmrre.2005.04.008
23 https://doi.org/10.1016/s0014-5793(98)00276-2
24 https://doi.org/10.1016/s0168-9525(97)01255-9
25 https://doi.org/10.1016/s0958-1669(99)00035-x
26 https://doi.org/10.1016/s1359-6446(01)01914-6
27 https://doi.org/10.1046/j.1365-2958.1998.00711.x
28 https://doi.org/10.1046/j.1365-2958.1998.00790.x
29 https://doi.org/10.1073/pnas.0730515100
30 https://doi.org/10.1073/pnas.93.19.10268
31 https://doi.org/10.1093/molbev/msh004
32 https://doi.org/10.1093/nar/15.3.1281
33 https://doi.org/10.1093/nar/27.1.29
34 https://doi.org/10.1093/nar/gkf546
35 https://doi.org/10.1093/nar/gkh024
36 https://doi.org/10.1093/oxfordjournals.molbev.a040335
37 https://doi.org/10.1097/00013542-199410000-00004
38 https://doi.org/10.1099/mic.0.27833-0
39 https://doi.org/10.1101/sqb.1983.047.01.123
40 https://doi.org/10.1111/j.1365-2958.2007.05849.x
41 https://doi.org/10.1126/science.1061217
42 https://doi.org/10.1126/science.7542800
43 https://doi.org/10.1128/aac.36.7.1504
44 https://doi.org/10.1128/jb.182.15.4319-4327.2000
45 https://doi.org/10.21775/cimb.003.091
46 https://doi.org/10.4172/jcsb.1000038
47 https://doi.org/10.6026/97320630002062
48 https://doi.org/10.6026/97320630004143
49 https://doi.org/10.6026/97320630004278
50 schema:datePublished 2011-12
51 schema:datePublishedReg 2011-12-01
52 schema:description In recent years, genome-sequencing projects of pathogens and humans have revolutionized microbial drug target identification. Of the several known genomic strategies, subtractive genomics has been successfully utilized for identifying microbial drug targets. The present work demonstrates a novel genomics approach in which codon adaptation index (CAI), a measure used to predict the translational efficiency of a gene based on synonymous codon usage, is coupled with subtractive genomics approach for mining potential drug targets. The strategy adopted is demonstrated using respiratory pathogens, namely, Streptococcus pneumoniae and Haemophilus influenzae as examples. Our approach identified 8 potent target genes (Streptococcus pneumoniae-2, H. influenzae-6), which are functionally significant and also play key role in host-pathogen interactions. This approach facilitates swift identification of potential drug targets, thereby enabling the search for new inhibitors. These results underscore the utility of CAI for enhanced in silico drug target identification. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11568-011-9152-7) contains supplementary material, which is available to authorized users.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N58edd7f284144f17ae5f981484bdbedd
57 Nc170b06f9a0148c58c6789f9de9e4eaa
58 sg:journal.1038392
59 schema:name A novel in silico approach to identify potential therapeutic targets in human bacterial pathogens
60 schema:pagination 25-34
61 schema:productId N0c84b9f8a163434d839128ca30e982f3
62 N27d5aa42538e4943ab993b76959e9631
63 N35f7540f94cc4c66995e50477bfdca8f
64 N3c0d970d3f584138b26debdda10d61ca
65 Nc2805f11e4264c8faf2b4495b69ba6fa
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051813052
67 https://doi.org/10.1007/s11568-011-9152-7
68 schema:sdDatePublished 2019-04-10T18:23
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N998d54926d204e888d3510170df0cda9
71 schema:url http://link.springer.com/10.1007%2Fs11568-011-9152-7
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N0c84b9f8a163434d839128ca30e982f3 schema:name pubmed_id
76 schema:value 23205162
77 rdf:type schema:PropertyValue
78 N27d5aa42538e4943ab993b76959e9631 schema:name doi
79 schema:value 10.1007/s11568-011-9152-7
80 rdf:type schema:PropertyValue
81 N2c37407adf63473ab43fd711e0910355 rdf:first sg:person.01064635500.52
82 rdf:rest rdf:nil
83 N35f7540f94cc4c66995e50477bfdca8f schema:name dimensions_id
84 schema:value pub.1051813052
85 rdf:type schema:PropertyValue
86 N3c0d970d3f584138b26debdda10d61ca schema:name nlm_unique_id
87 schema:value 101530565
88 rdf:type schema:PropertyValue
89 N58edd7f284144f17ae5f981484bdbedd schema:volumeNumber 5
90 rdf:type schema:PublicationVolume
91 N6ad3e75b887f4a429955bd702aedbd46 rdf:first sg:person.01256164477.12
92 rdf:rest N72b5e072321e49bc90e08e752af0e096
93 N72b5e072321e49bc90e08e752af0e096 rdf:first sg:person.01016522300.41
94 rdf:rest N2c37407adf63473ab43fd711e0910355
95 N998d54926d204e888d3510170df0cda9 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nc170b06f9a0148c58c6789f9de9e4eaa schema:issueNumber 1-4
98 rdf:type schema:PublicationIssue
99 Nc2805f11e4264c8faf2b4495b69ba6fa schema:name readcube_id
100 schema:value f6cf190ea6425eb72a5aebe8a5e3373f4c45ffe56135c144f08bdea2efd9225d
101 rdf:type schema:PropertyValue
102 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
103 schema:name Biological Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
106 schema:name Microbiology
107 rdf:type schema:DefinedTerm
108 sg:journal.1038392 schema:issn 1877-6558
109 1877-6566
110 schema:name The HUGO Journal
111 rdf:type schema:Periodical
112 sg:person.01016522300.41 schema:affiliation https://www.grid.ac/institutes/grid.412742.6
113 schema:familyName Subramanian
114 schema:givenName Gurunathan
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016522300.41
116 rdf:type schema:Person
117 sg:person.01064635500.52 schema:affiliation https://www.grid.ac/institutes/grid.413015.2
118 schema:familyName Dorairaj
119 schema:givenName Sudarsanam
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064635500.52
121 rdf:type schema:Person
122 sg:person.01256164477.12 schema:affiliation https://www.grid.ac/institutes/grid.414795.a
123 schema:familyName Vetrivel
124 schema:givenName Umashankar
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256164477.12
126 rdf:type schema:Person
127 sg:pub.10.1007/bf00178847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031890057
128 https://doi.org/10.1007/bf00178847
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nbt1010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954636
131 https://doi.org/10.1038/nbt1010
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nbt1034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016768028
134 https://doi.org/10.1038/nbt1034
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/1752-0509-4-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034795817
137 https://doi.org/10.1186/1752-0509-4-56
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/gb-2008-9-4-r70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016424517
140 https://doi.org/10.1186/gb-2008-9-4-r70
141 rdf:type schema:CreativeWork
142 https://app.dimensions.ai/details/publication/pub.1075814153 schema:CreativeWork
143 https://app.dimensions.ai/details/publication/pub.1077010749 schema:CreativeWork
144 https://app.dimensions.ai/details/publication/pub.1077259368 schema:CreativeWork
145 https://app.dimensions.ai/details/publication/pub.1077287110 schema:CreativeWork
146 https://app.dimensions.ai/details/publication/pub.1077629620 schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1077814188 schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1078041874 schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1082116021 schema:CreativeWork
150 https://app.dimensions.ai/details/publication/pub.1082604934 schema:CreativeWork
151 https://doi.org/10.1016/0014-5793(95)00233-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037852753
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0022-2836(80)90260-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030789396
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/0378-1119(82)90157-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034033311
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.compbiolchem.2005.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033650448
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.fmrre.2005.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014445270
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0014-5793(98)00276-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000716680
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0168-9525(97)01255-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026945821
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0958-1669(99)00035-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001971254
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s1359-6446(01)01914-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005262680
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1046/j.1365-2958.1998.00711.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038240563
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1046/j.1365-2958.1998.00790.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028733624
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.0730515100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033908509
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1073/pnas.93.19.10268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003668202
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/molbev/msh004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018284532
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/nar/15.3.1281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010536976
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/nar/27.1.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001521131
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/nar/gkf546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044779086
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/nar/gkh024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044615528
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/oxfordjournals.molbev.a040335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080033472
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1097/00013542-199410000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051753552
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1099/mic.0.27833-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060397391
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1101/sqb.1983.047.01.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060405443
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1111/j.1365-2958.2007.05849.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040469226
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.1061217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445088
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1126/science.7542800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062647490
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1128/aac.36.7.1504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062709846
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1128/jb.182.15.4319-4327.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009343989
204 rdf:type schema:CreativeWork
205 https://doi.org/10.21775/cimb.003.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069252938
206 rdf:type schema:CreativeWork
207 https://doi.org/10.4172/jcsb.1000038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022869986
208 rdf:type schema:CreativeWork
209 https://doi.org/10.6026/97320630002062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073593811
210 rdf:type schema:CreativeWork
211 https://doi.org/10.6026/97320630004143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073594027
212 rdf:type schema:CreativeWork
213 https://doi.org/10.6026/97320630004278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073594057
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.412742.6 schema:alternateName SRM University
216 schema:name Department of Bioinformatics, SRM University, Ramapuram Campus, 600 089, Chennai, Tamilnadu, India
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.413015.2 schema:alternateName University of Madras
219 schema:name Department of Advanced Zoology and Biotechnology, Loyola College, 600 034, Chennai, Tamilnadu, India
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.414795.a schema:alternateName Sankara Nethralaya
222 schema:name Center of Bioinformatics, Vision Research Foundation, Sankara Nethralaya, 600 006, Chennai, Tamilnadu, India
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...