Continuous dependence and convergence for a Kelvin–Voigt fluid of order one View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-22

AUTHORS

Brian Straughan

ABSTRACT

It is shown that the solution to the boundary - initial value problem for a Kelvin–Voigt fluid of order one depends continuously upon the Kelvin–Voigt parameters, the viscosity, and the viscoelastic coefficients. Convergence of a solution is also shown.

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11565-021-00381-7

DOI

http://dx.doi.org/10.1007/s11565-021-00381-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142737719


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Durham, DH1 3LE, Durham, UK", 
          "id": "http://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Mathematics, University of Durham, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Straughan", 
        "givenName": "Brian", 
        "id": "sg:person.01251074156.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251074156.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00332-008-9029-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019792960", 
          "https://doi.org/10.1007/s00332-008-9029-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13661-021-01501-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1136233453", 
          "https://doi.org/10.1186/s13661-021-01501-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11401-009-0205-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015046239", 
          "https://doi.org/10.1007/s11401-009-0205-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-007-2739-7_264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037265763", 
          "https://doi.org/10.1007/978-94-007-2739-7_264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11012-016-0414-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017080172", 
          "https://doi.org/10.1007/s11012-016-0414-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12215-020-00588-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134671114", 
          "https://doi.org/10.1007/s12215-020-00588-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10659-013-9447-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051141013", 
          "https://doi.org/10.1007/s10659-013-9447-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02362946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014171874", 
          "https://doi.org/10.1007/bf02362946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02837207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086068119", 
          "https://doi.org/10.1007/bf02837207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01249338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007801255", 
          "https://doi.org/10.1007/bf01249338"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-22", 
    "datePublishedReg": "2021-11-22", 
    "description": "It is shown that the solution to the boundary - initial value problem for a Kelvin\u2013Voigt fluid of order one depends continuously upon the Kelvin\u2013Voigt parameters, the viscosity, and the viscoelastic coefficients. Convergence of a solution is also shown.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11565-021-00381-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136062", 
        "issn": [
          "0430-3202", 
          "1827-1510"
        ], 
        "name": "Annali dell' Universit\u00e0 di Ferrara", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "boundary-initial value problem", 
      "viscoelastic coefficients", 
      "order one", 
      "Kelvin-Voigt fluid", 
      "fluid", 
      "value problem", 
      "solution", 
      "viscosity", 
      "coefficient", 
      "parameters", 
      "convergence", 
      "dependence", 
      "one", 
      "problem", 
      "continuous dependence", 
      "Kelvin\u2013Voigt parameters"
    ], 
    "name": "Continuous dependence and convergence for a Kelvin\u2013Voigt fluid of order one", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142737719"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11565-021-00381-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11565-021-00381-7", 
      "https://app.dimensions.ai/details/publication/pub.1142737719"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_876.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11565-021-00381-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00381-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00381-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00381-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00381-7'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      22 PREDICATES      48 URIs      31 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11565-021-00381-7 schema:about anzsrc-for:01
2 schema:author N2bb8e544ff924d25966c1b8d8b5d1346
3 schema:citation sg:pub.10.1007/978-94-007-2739-7_264
4 sg:pub.10.1007/bf01249338
5 sg:pub.10.1007/bf02362946
6 sg:pub.10.1007/bf02837207
7 sg:pub.10.1007/s00332-008-9029-7
8 sg:pub.10.1007/s10659-013-9447-0
9 sg:pub.10.1007/s11012-016-0414-2
10 sg:pub.10.1007/s11401-009-0205-3
11 sg:pub.10.1007/s12215-020-00588-1
12 sg:pub.10.1186/s13661-021-01501-0
13 schema:datePublished 2021-11-22
14 schema:datePublishedReg 2021-11-22
15 schema:description It is shown that the solution to the boundary - initial value problem for a Kelvin–Voigt fluid of order one depends continuously upon the Kelvin–Voigt parameters, the viscosity, and the viscoelastic coefficients. Convergence of a solution is also shown.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf sg:journal.1136062
20 schema:keywords Kelvin-Voigt fluid
21 Kelvin–Voigt parameters
22 boundary-initial value problem
23 coefficient
24 continuous dependence
25 convergence
26 dependence
27 fluid
28 one
29 order one
30 parameters
31 problem
32 solution
33 value problem
34 viscoelastic coefficients
35 viscosity
36 schema:name Continuous dependence and convergence for a Kelvin–Voigt fluid of order one
37 schema:pagination 1-13
38 schema:productId N317157644ced49cc87fb4f2253ab725e
39 Ne2bc13c1373e41afb90d6c58648072e8
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142737719
41 https://doi.org/10.1007/s11565-021-00381-7
42 schema:sdDatePublished 2022-01-01T18:56
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nddf4f0a047984b53b42599cf491c9330
45 schema:url https://doi.org/10.1007/s11565-021-00381-7
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N2bb8e544ff924d25966c1b8d8b5d1346 rdf:first sg:person.01251074156.99
50 rdf:rest rdf:nil
51 N317157644ced49cc87fb4f2253ab725e schema:name doi
52 schema:value 10.1007/s11565-021-00381-7
53 rdf:type schema:PropertyValue
54 Nddf4f0a047984b53b42599cf491c9330 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Ne2bc13c1373e41afb90d6c58648072e8 schema:name dimensions_id
57 schema:value pub.1142737719
58 rdf:type schema:PropertyValue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 sg:journal.1136062 schema:issn 0430-3202
63 1827-1510
64 schema:name Annali dell' Università di Ferrara
65 schema:publisher Springer Nature
66 rdf:type schema:Periodical
67 sg:person.01251074156.99 schema:affiliation grid-institutes:grid.8250.f
68 schema:familyName Straughan
69 schema:givenName Brian
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251074156.99
71 rdf:type schema:Person
72 sg:pub.10.1007/978-94-007-2739-7_264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037265763
73 https://doi.org/10.1007/978-94-007-2739-7_264
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01249338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007801255
76 https://doi.org/10.1007/bf01249338
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf02362946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014171874
79 https://doi.org/10.1007/bf02362946
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf02837207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086068119
82 https://doi.org/10.1007/bf02837207
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s00332-008-9029-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019792960
85 https://doi.org/10.1007/s00332-008-9029-7
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s10659-013-9447-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051141013
88 https://doi.org/10.1007/s10659-013-9447-0
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s11012-016-0414-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017080172
91 https://doi.org/10.1007/s11012-016-0414-2
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s11401-009-0205-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015046239
94 https://doi.org/10.1007/s11401-009-0205-3
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s12215-020-00588-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134671114
97 https://doi.org/10.1007/s12215-020-00588-1
98 rdf:type schema:CreativeWork
99 sg:pub.10.1186/s13661-021-01501-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136233453
100 https://doi.org/10.1186/s13661-021-01501-0
101 rdf:type schema:CreativeWork
102 grid-institutes:grid.8250.f schema:alternateName Department of Mathematics, University of Durham, DH1 3LE, Durham, UK
103 schema:name Department of Mathematics, University of Durham, DH1 3LE, Durham, UK
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...