Strictly hyperbolic Cauchy problems on Rn with unbounded and singular coefficients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-27

AUTHORS

Rahul Raju Pattar, N. Uday Kiran

ABSTRACT

We investigate the behavior of the solutions of a class of certain strictly hyperbolic equations defined on (0,T]×Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,T]\times {\mathbb {R}}^n$$\end{document} in relation to a class of metrics on the phase space. In particular, we study the global regularity and decay issues of the solution to an equation with coefficients polynomially bound in x with their x-derivatives and t-derivative of order O(t-δ),δ∈[0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {O}(t^{-\delta }),\delta \in [0,1),$$\end{document} and O(t-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {O}(t^{-1})$$\end{document} respectively. This type of singular behavior allows coefficients to be either oscillatory or logarithmically bounded at t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. We use the Planck function associated with the metric to subdivide the extended phase space and define an appropriate generalized parameter dependent symbol class. We report that the solution experiences a finite loss in the Sobolev space index in relation to the initial datum defined in the Sobolev space tailored to the metric. Our analysis suggests that an infinite loss is quite expected when the order of singularity of the first time derivative of the leading coefficients exceeds O(t-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(t^{-1})$$\end{document}. We confirm this by providing a counterexample. Further, using the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} integrability of the logarithmic singularity in t and the global properties of the operator with respect to x, we derive an anisotropic cone condition in our setting. More... »

PAGES

11-45

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11565-021-00378-2

DOI

http://dx.doi.org/10.1007/s11565-021-00378-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142180088


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India", 
          "id": "http://www.grid.ac/institutes/grid.444651.6", 
          "name": [
            "Department of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pattar", 
        "givenName": "Rahul Raju", 
        "id": "sg:person.012615137567.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012615137567.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India", 
          "id": "http://www.grid.ac/institutes/grid.444651.6", 
          "name": [
            "Department of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiran", 
        "givenName": "N. Uday", 
        "id": "sg:person.014132532161.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014132532161.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11868-013-0086-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051094397", 
          "https://doi.org/10.1007/s11868-013-0086-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-8510-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020384038", 
          "https://doi.org/10.1007/978-3-7643-8510-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11868-017-0203-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084519886", 
          "https://doi.org/10.1007/s11868-017-0203-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-46175-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029183879", 
          "https://doi.org/10.1007/978-3-642-46175-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11868-018-0236-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100481062", 
          "https://doi.org/10.1007/s11868-018-0236-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-27", 
    "datePublishedReg": "2021-10-27", 
    "description": "We investigate the behavior of the solutions of a class of certain strictly hyperbolic equations defined on (0,T]\u00d7Rn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(0,T]\\times {\\mathbb {R}}^n$$\\end{document} in relation to a class of metrics on the phase space. In particular, we study the global regularity and decay issues of the solution to an equation with coefficients polynomially bound in x with their x-derivatives and t-derivative of order O(t-\u03b4),\u03b4\u2208[0,1),\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\text {O}(t^{-\\delta }),\\delta \\in [0,1),$$\\end{document} and O(t-1)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\text {O}(t^{-1})$$\\end{document} respectively. This type of singular behavior allows coefficients to be either oscillatory or logarithmically bounded at t=0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$t=0$$\\end{document}. We use the Planck function associated with the metric to subdivide the extended phase space and define an appropriate generalized parameter dependent symbol class. We report that the solution experiences a finite loss in the Sobolev space index in relation to the initial datum defined in the Sobolev space tailored to the metric. Our analysis suggests that an infinite loss is quite expected when the order of singularity of the first time derivative of the leading coefficients exceeds O(t-1)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$O(t^{-1})$$\\end{document}. We confirm this by providing a counterexample. Further, using the L1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$L^1$$\\end{document} integrability of the logarithmic singularity in t and the global properties of the operator with respect to x, we derive an anisotropic cone condition in our setting.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11565-021-00378-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136062", 
        "issn": [
          "0430-3202", 
          "1827-1510"
        ], 
        "name": "Annali dell' Universit\u00e0 di Ferrara", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "keywords": [
      "phase space", 
      "extended phase space", 
      "class of metrics", 
      "hyperbolic equations", 
      "order of singularity", 
      "first time derivative", 
      "Cauchy problem", 
      "singular coefficients", 
      "Sobolev spaces", 
      "global regularity", 
      "time derivative", 
      "singular behavior", 
      "initial data", 
      "logarithmic singularity", 
      "global properties", 
      "cone condition", 
      "finite loss", 
      "infinite loss", 
      "symbol classes", 
      "equations", 
      "Planck function", 
      "singularity", 
      "X derivatives", 
      "space", 
      "T derivatives", 
      "solution", 
      "integrability", 
      "class", 
      "coefficient", 
      "metrics", 
      "operators", 
      "counterexamples", 
      "regularity", 
      "Rn", 
      "problem", 
      "space index", 
      "order", 
      "properties", 
      "behavior", 
      "function", 
      "relation", 
      "derivatives", 
      "respect", 
      "conditions", 
      "analysis", 
      "data", 
      "types", 
      "issues", 
      "loss", 
      "setting", 
      "index"
    ], 
    "name": "Strictly hyperbolic Cauchy problems on Rn with unbounded and singular coefficients", 
    "pagination": "11-45", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142180088"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11565-021-00378-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11565-021-00378-2", 
      "https://app.dimensions.ai/details/publication/pub.1142180088"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_907.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11565-021-00378-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00378-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00378-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00378-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00378-2'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      22 PREDICATES      81 URIs      68 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11565-021-00378-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc44d719954f0421c90fe0fcf746ffd27
4 schema:citation sg:pub.10.1007/978-3-642-46175-0
5 sg:pub.10.1007/978-3-7643-8510-1
6 sg:pub.10.1007/s11868-013-0086-9
7 sg:pub.10.1007/s11868-017-0203-2
8 sg:pub.10.1007/s11868-018-0236-1
9 schema:datePublished 2021-10-27
10 schema:datePublishedReg 2021-10-27
11 schema:description We investigate the behavior of the solutions of a class of certain strictly hyperbolic equations defined on (0,T]×Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,T]\times {\mathbb {R}}^n$$\end{document} in relation to a class of metrics on the phase space. In particular, we study the global regularity and decay issues of the solution to an equation with coefficients polynomially bound in x with their x-derivatives and t-derivative of order O(t-δ),δ∈[0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {O}(t^{-\delta }),\delta \in [0,1),$$\end{document} and O(t-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {O}(t^{-1})$$\end{document} respectively. This type of singular behavior allows coefficients to be either oscillatory or logarithmically bounded at t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. We use the Planck function associated with the metric to subdivide the extended phase space and define an appropriate generalized parameter dependent symbol class. We report that the solution experiences a finite loss in the Sobolev space index in relation to the initial datum defined in the Sobolev space tailored to the metric. Our analysis suggests that an infinite loss is quite expected when the order of singularity of the first time derivative of the leading coefficients exceeds O(t-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(t^{-1})$$\end{document}. We confirm this by providing a counterexample. Further, using the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} integrability of the logarithmic singularity in t and the global properties of the operator with respect to x, we derive an anisotropic cone condition in our setting.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N35b1e6a9a66a469dac42afd3bc7ad406
16 N722402d4bfae467f9180e555faaddeeb
17 sg:journal.1136062
18 schema:keywords Cauchy problem
19 Planck function
20 Rn
21 Sobolev spaces
22 T derivatives
23 X derivatives
24 analysis
25 behavior
26 class
27 class of metrics
28 coefficient
29 conditions
30 cone condition
31 counterexamples
32 data
33 derivatives
34 equations
35 extended phase space
36 finite loss
37 first time derivative
38 function
39 global properties
40 global regularity
41 hyperbolic equations
42 index
43 infinite loss
44 initial data
45 integrability
46 issues
47 logarithmic singularity
48 loss
49 metrics
50 operators
51 order
52 order of singularity
53 phase space
54 problem
55 properties
56 regularity
57 relation
58 respect
59 setting
60 singular behavior
61 singular coefficients
62 singularity
63 solution
64 space
65 space index
66 symbol classes
67 time derivative
68 types
69 schema:name Strictly hyperbolic Cauchy problems on Rn with unbounded and singular coefficients
70 schema:pagination 11-45
71 schema:productId N9f6d5c6d2c304e04a309a2284b9e139b
72 Nf5cf015b3eb8459488224428b51f5085
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142180088
74 https://doi.org/10.1007/s11565-021-00378-2
75 schema:sdDatePublished 2022-05-20T07:38
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N3d326bf057b94e7aa2f903a7d1335e41
78 schema:url https://doi.org/10.1007/s11565-021-00378-2
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N35b1e6a9a66a469dac42afd3bc7ad406 schema:volumeNumber 68
83 rdf:type schema:PublicationVolume
84 N3d326bf057b94e7aa2f903a7d1335e41 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N722402d4bfae467f9180e555faaddeeb schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 N9f6d5c6d2c304e04a309a2284b9e139b schema:name doi
89 schema:value 10.1007/s11565-021-00378-2
90 rdf:type schema:PropertyValue
91 Nbee587423adb44828243743f8dbbf561 rdf:first sg:person.014132532161.17
92 rdf:rest rdf:nil
93 Nc44d719954f0421c90fe0fcf746ffd27 rdf:first sg:person.012615137567.84
94 rdf:rest Nbee587423adb44828243743f8dbbf561
95 Nf5cf015b3eb8459488224428b51f5085 schema:name dimensions_id
96 schema:value pub.1142180088
97 rdf:type schema:PropertyValue
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
102 schema:name Pure Mathematics
103 rdf:type schema:DefinedTerm
104 sg:journal.1136062 schema:issn 0430-3202
105 1827-1510
106 schema:name Annali dell' Università di Ferrara
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.012615137567.84 schema:affiliation grid-institutes:grid.444651.6
110 schema:familyName Pattar
111 schema:givenName Rahul Raju
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012615137567.84
113 rdf:type schema:Person
114 sg:person.014132532161.17 schema:affiliation grid-institutes:grid.444651.6
115 schema:familyName Kiran
116 schema:givenName N. Uday
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014132532161.17
118 rdf:type schema:Person
119 sg:pub.10.1007/978-3-642-46175-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029183879
120 https://doi.org/10.1007/978-3-642-46175-0
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-3-7643-8510-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020384038
123 https://doi.org/10.1007/978-3-7643-8510-1
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11868-013-0086-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051094397
126 https://doi.org/10.1007/s11868-013-0086-9
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11868-017-0203-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084519886
129 https://doi.org/10.1007/s11868-017-0203-2
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11868-018-0236-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100481062
132 https://doi.org/10.1007/s11868-018-0236-1
133 rdf:type schema:CreativeWork
134 grid-institutes:grid.444651.6 schema:alternateName Department of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
135 schema:name Department of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh, India
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...