A family of derivative-free methods for solving nonlinear equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-09-13

AUTHORS

Sunil Kumar, Janak Raj Sharma

ABSTRACT

We propose a two-parameter derivative-free family of methods with memory of convergence order 1.84 for finding the real roots of nonlinear equations. The new methods require only one function evaluation per iteration, so efficiency index is also 1.84. The process is carried out by approximating the derivative in Newton’s iteration using general quadratic equation αu2+βv2+α1u+β1v+δ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha u^2+\beta v^2+\alpha _1 u+\beta _1 v+\delta =0$$\end{document} in terms of coefficients α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta $$\end{document}. Various options of α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta $$\end{document} correspond to various quadratic forms viz. circle, ellipse, hyperbola and parabola. The application of new methods is validated on Kepler’s problem, Isentropic supersonic flow problem, L-C-R circuit problem and Population growth problem. In addition, a comparison of the performance of new methods with existing methods of same nature is also presented to check the consistency. More... »

PAGES

355-367

References to SciGraph publications

  • 1983-10. The solution of Kepler's equation, I in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11565-021-00377-3

    DOI

    http://dx.doi.org/10.1007/s11565-021-00377-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141079480


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, 601103, Channai, India", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, 601103, Channai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kumar", 
            "givenName": "Sunil", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India", 
              "id": "http://www.grid.ac/institutes/grid.444561.6", 
              "name": [
                "Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sharma", 
            "givenName": "Janak Raj", 
            "id": "sg:person.014410066715.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014410066715.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01686811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049930453", 
              "https://doi.org/10.1007/bf01686811"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-13", 
        "datePublishedReg": "2021-09-13", 
        "description": "We propose a two-parameter derivative-free family of methods with memory of convergence order 1.84 for finding the real roots of nonlinear equations. The new methods require only one function evaluation per iteration, so efficiency index is also 1.84. The process is carried out by approximating the derivative in Newton\u2019s iteration using general quadratic equation \u03b1u2+\u03b2v2+\u03b11u+\u03b21v+\u03b4=0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha u^2+\\beta v^2+\\alpha _1 u+\\beta _1 v+\\delta =0$$\\end{document} in terms of coefficients \u03b1,\u03b2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha , \\beta $$\\end{document}. Various options of \u03b1,\u03b2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha , \\beta $$\\end{document} correspond to various quadratic forms viz. circle, ellipse, hyperbola and parabola. The application of new methods is validated on Kepler\u2019s problem, Isentropic supersonic flow problem, L-C-R circuit problem and Population growth problem. In addition, a comparison of the performance of new methods with existing methods of same nature is also presented to check the consistency.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11565-021-00377-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136062", 
            "issn": [
              "0430-3202", 
              "1827-1510"
            ], 
            "name": "Annali dell' Universit\u00e0 di Ferrara", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "67"
          }
        ], 
        "keywords": [
          "nonlinear equations", 
          "derivative-free family", 
          "derivative-free methods", 
          "supersonic flow problems", 
          "general quadratic equation", 
          "Newton iteration", 
          "flow problems", 
          "population growth problem", 
          "real roots", 
          "new method", 
          "function evaluations", 
          "Kepler problem", 
          "circuit problems", 
          "equations", 
          "quadratic equation", 
          "iteration", 
          "problem", 
          "growth problems", 
          "coefficient \u03b1", 
          "same nature", 
          "hyperbola", 
          "parabola", 
          "efficiency index", 
          "ellipse", 
          "terms", 
          "applications", 
          "circle", 
          "derivatives", 
          "performance", 
          "consistency", 
          "comparison", 
          "nature", 
          "family", 
          "process", 
          "forms viz", 
          "viz", 
          "roots", 
          "addition", 
          "memory", 
          "index", 
          "evaluation", 
          "options", 
          "method", 
          "two-parameter derivative-free family", 
          "quadratic forms viz", 
          "Isentropic supersonic flow problem"
        ], 
        "name": "A family of derivative-free methods for solving nonlinear equations", 
        "pagination": "355-367", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141079480"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11565-021-00377-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11565-021-00377-3", 
          "https://app.dimensions.ai/details/publication/pub.1141079480"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_899.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11565-021-00377-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00377-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00377-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00377-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00377-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    117 TRIPLES      22 PREDICATES      72 URIs      63 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11565-021-00377-3 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N8c31eb25a5e64edfbe2ebe74a267f279
    4 schema:citation sg:pub.10.1007/bf01686811
    5 schema:datePublished 2021-09-13
    6 schema:datePublishedReg 2021-09-13
    7 schema:description We propose a two-parameter derivative-free family of methods with memory of convergence order 1.84 for finding the real roots of nonlinear equations. The new methods require only one function evaluation per iteration, so efficiency index is also 1.84. The process is carried out by approximating the derivative in Newton’s iteration using general quadratic equation αu2+βv2+α1u+β1v+δ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha u^2+\beta v^2+\alpha _1 u+\beta _1 v+\delta =0$$\end{document} in terms of coefficients α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta $$\end{document}. Various options of α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta $$\end{document} correspond to various quadratic forms viz. circle, ellipse, hyperbola and parabola. The application of new methods is validated on Kepler’s problem, Isentropic supersonic flow problem, L-C-R circuit problem and Population growth problem. In addition, a comparison of the performance of new methods with existing methods of same nature is also presented to check the consistency.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N209da732ccf1425f85d37615266f013c
    12 N994e4855ad9644b6afb22cd9290a7105
    13 sg:journal.1136062
    14 schema:keywords Isentropic supersonic flow problem
    15 Kepler problem
    16 Newton iteration
    17 addition
    18 applications
    19 circle
    20 circuit problems
    21 coefficient α
    22 comparison
    23 consistency
    24 derivative-free family
    25 derivative-free methods
    26 derivatives
    27 efficiency index
    28 ellipse
    29 equations
    30 evaluation
    31 family
    32 flow problems
    33 forms viz
    34 function evaluations
    35 general quadratic equation
    36 growth problems
    37 hyperbola
    38 index
    39 iteration
    40 memory
    41 method
    42 nature
    43 new method
    44 nonlinear equations
    45 options
    46 parabola
    47 performance
    48 population growth problem
    49 problem
    50 process
    51 quadratic equation
    52 quadratic forms viz
    53 real roots
    54 roots
    55 same nature
    56 supersonic flow problems
    57 terms
    58 two-parameter derivative-free family
    59 viz
    60 schema:name A family of derivative-free methods for solving nonlinear equations
    61 schema:pagination 355-367
    62 schema:productId N445939f2fda442cf8274726fd8cf962f
    63 Ncb8a37cd1d4c48bc9b305983c5f292c0
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141079480
    65 https://doi.org/10.1007/s11565-021-00377-3
    66 schema:sdDatePublished 2022-01-01T19:02
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher Nd6459893cb794a15b14bc40268d513bf
    69 schema:url https://doi.org/10.1007/s11565-021-00377-3
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N01fe18fca66b4ac9aa8054648d3a3571 schema:affiliation grid-institutes:None
    74 schema:familyName Kumar
    75 schema:givenName Sunil
    76 rdf:type schema:Person
    77 N209da732ccf1425f85d37615266f013c schema:volumeNumber 67
    78 rdf:type schema:PublicationVolume
    79 N445939f2fda442cf8274726fd8cf962f schema:name dimensions_id
    80 schema:value pub.1141079480
    81 rdf:type schema:PropertyValue
    82 N8c31eb25a5e64edfbe2ebe74a267f279 rdf:first N01fe18fca66b4ac9aa8054648d3a3571
    83 rdf:rest Na03f3618fc9b4e089a2836f6ee8c74d9
    84 N994e4855ad9644b6afb22cd9290a7105 schema:issueNumber 2
    85 rdf:type schema:PublicationIssue
    86 Na03f3618fc9b4e089a2836f6ee8c74d9 rdf:first sg:person.014410066715.34
    87 rdf:rest rdf:nil
    88 Ncb8a37cd1d4c48bc9b305983c5f292c0 schema:name doi
    89 schema:value 10.1007/s11565-021-00377-3
    90 rdf:type schema:PropertyValue
    91 Nd6459893cb794a15b14bc40268d513bf schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Mathematical Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Numerical and Computational Mathematics
    98 rdf:type schema:DefinedTerm
    99 sg:journal.1136062 schema:issn 0430-3202
    100 1827-1510
    101 schema:name Annali dell' Università di Ferrara
    102 schema:publisher Springer Nature
    103 rdf:type schema:Periodical
    104 sg:person.014410066715.34 schema:affiliation grid-institutes:grid.444561.6
    105 schema:familyName Sharma
    106 schema:givenName Janak Raj
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014410066715.34
    108 rdf:type schema:Person
    109 sg:pub.10.1007/bf01686811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049930453
    110 https://doi.org/10.1007/bf01686811
    111 rdf:type schema:CreativeWork
    112 grid-institutes:None schema:alternateName Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, 601103, Channai, India
    113 schema:name Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, 601103, Channai, India
    114 rdf:type schema:Organization
    115 grid-institutes:grid.444561.6 schema:alternateName Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India
    116 schema:name Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India
    117 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...