# A family of derivative-free methods for solving nonlinear equations

Ontology type: schema:ScholarlyArticle

### Article Info

DATE

2021-09-13

AUTHORS

Sunil Kumar, Janak Raj Sharma

ABSTRACT

We propose a two-parameter derivative-free family of methods with memory of convergence order 1.84 for finding the real roots of nonlinear equations. The new methods require only one function evaluation per iteration, so efficiency index is also 1.84. The process is carried out by approximating the derivative in Newton’s iteration using general quadratic equation αu2+βv2+α1u+β1v+δ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha u^2+\beta v^2+\alpha _1 u+\beta _1 v+\delta =0$$\end{document} in terms of coefficients α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta$$\end{document}. Various options of α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta$$\end{document} correspond to various quadratic forms viz. circle, ellipse, hyperbola and parabola. The application of new methods is validated on Kepler’s problem, Isentropic supersonic flow problem, L-C-R circuit problem and Population growth problem. In addition, a comparison of the performance of new methods with existing methods of same nature is also presented to check the consistency. More... »

PAGES

355-367

### References to SciGraph publications

• 1983-10. The solution of Kepler's equation, I in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
• ### Journal

TITLE

Annali dell' Università di Ferrara

ISSUE

2

VOLUME

67

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11565-021-00377-3

DOI

http://dx.doi.org/10.1007/s11565-021-00377-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141079480

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, 601103, Channai, India",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, 601103, Channai, India"
],
"type": "Organization"
},
"familyName": "Kumar",
"givenName": "Sunil",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India",
"id": "http://www.grid.ac/institutes/grid.444561.6",
"name": [
"Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India"
],
"type": "Organization"
},
"familyName": "Sharma",
"givenName": "Janak Raj",
"id": "sg:person.014410066715.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014410066715.34"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01686811",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049930453",
"https://doi.org/10.1007/bf01686811"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-09-13",
"datePublishedReg": "2021-09-13",
"description": "We propose a two-parameter derivative-free family of methods with memory of convergence order 1.84 for finding the real roots of nonlinear equations. The new methods require only one function evaluation per iteration, so efficiency index is also 1.84. The process is carried out by approximating the derivative in Newton\u2019s iteration using general quadratic equation \u03b1u2+\u03b2v2+\u03b11u+\u03b21v+\u03b4=0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha u^2+\\beta v^2+\\alpha _1 u+\\beta _1 v+\\delta =0$$\\end{document} in terms of coefficients \u03b1,\u03b2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha , \\beta$$\\end{document}. Various options of \u03b1,\u03b2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha , \\beta$$\\end{document} correspond to various quadratic forms viz. circle, ellipse, hyperbola and parabola. The application of new methods is validated on Kepler\u2019s problem, Isentropic supersonic flow problem, L-C-R circuit problem and Population growth problem. In addition, a comparison of the performance of new methods with existing methods of same nature is also presented to check the consistency.",
"genre": "article",
"id": "sg:pub.10.1007/s11565-021-00377-3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136062",
"issn": [
"0430-3202",
"1827-1510"
],
"name": "Annali dell' Universit\u00e0 di Ferrara",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"nonlinear equations",
"derivative-free family",
"derivative-free methods",
"supersonic flow problems",
"Newton iteration",
"flow problems",
"population growth problem",
"real roots",
"new method",
"function evaluations",
"Kepler problem",
"circuit problems",
"equations",
"iteration",
"problem",
"growth problems",
"coefficient \u03b1",
"same nature",
"hyperbola",
"parabola",
"efficiency index",
"ellipse",
"terms",
"applications",
"circle",
"derivatives",
"performance",
"consistency",
"comparison",
"nature",
"family",
"process",
"forms viz",
"viz",
"roots",
"memory",
"index",
"evaluation",
"options",
"method",
"two-parameter derivative-free family",
"Isentropic supersonic flow problem"
],
"name": "A family of derivative-free methods for solving nonlinear equations",
"pagination": "355-367",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141079480"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11565-021-00377-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11565-021-00377-3",
"https://app.dimensions.ai/details/publication/pub.1141079480"
],
"sdDataset": "articles",
"sdDatePublished": "2022-01-01T19:02",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_899.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11565-021-00377-3"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00377-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00377-3'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00377-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00377-3'

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      22 PREDICATES      72 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0103
3 schema:author N8c31eb25a5e64edfbe2ebe74a267f279
4 schema:citation sg:pub.10.1007/bf01686811
5 schema:datePublished 2021-09-13
6 schema:datePublishedReg 2021-09-13
7 schema:description We propose a two-parameter derivative-free family of methods with memory of convergence order 1.84 for finding the real roots of nonlinear equations. The new methods require only one function evaluation per iteration, so efficiency index is also 1.84. The process is carried out by approximating the derivative in Newton’s iteration using general quadratic equation αu2+βv2+α1u+β1v+δ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha u^2+\beta v^2+\alpha _1 u+\beta _1 v+\delta =0$$\end{document} in terms of coefficients α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta$$\end{document}. Various options of α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta$$\end{document} correspond to various quadratic forms viz. circle, ellipse, hyperbola and parabola. The application of new methods is validated on Kepler’s problem, Isentropic supersonic flow problem, L-C-R circuit problem and Population growth problem. In addition, a comparison of the performance of new methods with existing methods of same nature is also presented to check the consistency.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N209da732ccf1425f85d37615266f013c
13 sg:journal.1136062
14 schema:keywords Isentropic supersonic flow problem
15 Kepler problem
16 Newton iteration
18 applications
19 circle
20 circuit problems
21 coefficient α
22 comparison
23 consistency
24 derivative-free family
25 derivative-free methods
26 derivatives
27 efficiency index
28 ellipse
29 equations
30 evaluation
31 family
32 flow problems
33 forms viz
34 function evaluations
36 growth problems
37 hyperbola
38 index
39 iteration
40 memory
41 method
42 nature
43 new method
44 nonlinear equations
45 options
46 parabola
47 performance
48 population growth problem
49 problem
50 process
53 real roots
54 roots
55 same nature
56 supersonic flow problems
57 terms
58 two-parameter derivative-free family
59 viz
60 schema:name A family of derivative-free methods for solving nonlinear equations
61 schema:pagination 355-367
62 schema:productId N445939f2fda442cf8274726fd8cf962f
63 Ncb8a37cd1d4c48bc9b305983c5f292c0
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141079480
65 https://doi.org/10.1007/s11565-021-00377-3
66 schema:sdDatePublished 2022-01-01T19:02
68 schema:sdPublisher Nd6459893cb794a15b14bc40268d513bf
69 schema:url https://doi.org/10.1007/s11565-021-00377-3
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N01fe18fca66b4ac9aa8054648d3a3571 schema:affiliation grid-institutes:None
74 schema:familyName Kumar
75 schema:givenName Sunil
76 rdf:type schema:Person
78 rdf:type schema:PublicationVolume
79 N445939f2fda442cf8274726fd8cf962f schema:name dimensions_id
80 schema:value pub.1141079480
81 rdf:type schema:PropertyValue
82 N8c31eb25a5e64edfbe2ebe74a267f279 rdf:first N01fe18fca66b4ac9aa8054648d3a3571
83 rdf:rest Na03f3618fc9b4e089a2836f6ee8c74d9
85 rdf:type schema:PublicationIssue
86 Na03f3618fc9b4e089a2836f6ee8c74d9 rdf:first sg:person.014410066715.34
87 rdf:rest rdf:nil
88 Ncb8a37cd1d4c48bc9b305983c5f292c0 schema:name doi
89 schema:value 10.1007/s11565-021-00377-3
90 rdf:type schema:PropertyValue
91 Nd6459893cb794a15b14bc40268d513bf schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
94 schema:name Mathematical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
97 schema:name Numerical and Computational Mathematics
98 rdf:type schema:DefinedTerm
99 sg:journal.1136062 schema:issn 0430-3202
100 1827-1510
101 schema:name Annali dell' Università di Ferrara
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.014410066715.34 schema:affiliation grid-institutes:grid.444561.6
105 schema:familyName Sharma
106 schema:givenName Janak Raj
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014410066715.34
108 rdf:type schema:Person
109 sg:pub.10.1007/bf01686811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049930453
110 https://doi.org/10.1007/bf01686811
111 rdf:type schema:CreativeWork
112 grid-institutes:None schema:alternateName Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, 601103, Channai, India
113 schema:name Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, 601103, Channai, India
114 rdf:type schema:Organization
115 grid-institutes:grid.444561.6 schema:alternateName Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India
116 schema:name Department of Mathematics, Sant Longowal Institute of Engineering and Technology, 148106, Longowal, Sangrur, India
117 rdf:type schema:Organization