On the irreducibility of the extensions of Burau and Gassner representations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-18

AUTHORS

Mohamad N. Nasser, Mohammad N. Abdulrahim

ABSTRACT

Let Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document} be the group of basis conjugating automorphisms of a free group Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_n$$\end{document}, and Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} the group of conjugating automorphisms of Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_n$$\end{document}. Valerij G. Bardakov has constructed representations of Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document}, Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} in the groups GLn(Z[t1±1,…,tn±1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {Z}[{t_1}^{\pm 1}, \ldots ,{t_n}^{\pm 1}])$$\end{document} and in GLn(Z[t±1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {Z}[{t}^{\pm 1}])$$\end{document} respectively, where t1,…,tn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_1, \ldots , t_n, t$$\end{document} are indeterminate variables. We show that these representations are reducible and we determine the irreducible components of the representations in GLn(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {C})$$\end{document}, which are obtained by giving values to the variables above. Next, we consider the tensor product of the representations of Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document}, Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} and study their irreduciblity in the case n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document}. More... »

PAGES

415-434

References to SciGraph publications

  • 1935-12. Über Zopfgruppen und gleichsinnig verdrillte Verkettungen in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4

    DOI

    http://dx.doi.org/10.1007/s11565-021-00376-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141220759


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon", 
              "id": "http://www.grid.ac/institutes/grid.18112.3b", 
              "name": [
                "Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nasser", 
            "givenName": "Mohamad N.", 
            "id": "sg:person.016447442171.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447442171.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon", 
              "id": "http://www.grid.ac/institutes/grid.18112.3b", 
              "name": [
                "Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abdulrahim", 
            "givenName": "Mohammad N.", 
            "id": "sg:person.010655147447.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655147447.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02940722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034465503", 
              "https://doi.org/10.1007/bf02940722"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-18", 
        "datePublishedReg": "2021-09-18", 
        "description": "Let Cbn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Cb_n$$\\end{document} be the group of basis conjugating automorphisms of a free group Fn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {F}_n$$\\end{document}, and Cn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_n$$\\end{document} the group of conjugating automorphisms of Fn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {F}_n$$\\end{document}. Valerij G. Bardakov has constructed representations of Cbn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Cb_n$$\\end{document}, Cn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_n$$\\end{document} in the groups GLn(Z[t1\u00b11,\u2026,tn\u00b11])\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$GL_n(\\mathbb {Z}[{t_1}^{\\pm 1}, \\ldots ,{t_n}^{\\pm 1}])$$\\end{document} and in GLn(Z[t\u00b11])\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$GL_n(\\mathbb {Z}[{t}^{\\pm 1}])$$\\end{document} respectively, where t1,\u2026,tn,t\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$t_1, \\ldots , t_n, t$$\\end{document} are indeterminate variables. We show that these representations are reducible and we determine the irreducible components of the representations in GLn(C)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$GL_n(\\mathbb {C})$$\\end{document}, which are obtained by giving values to the variables above. Next, we consider the tensor product of the representations of Cbn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Cb_n$$\\end{document}, Cn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_n$$\\end{document} and study their irreduciblity in the case n=3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n=3$$\\end{document}.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11565-021-00376-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136062", 
            "issn": [
              "0430-3202", 
              "1827-1510"
            ], 
            "name": "Annali dell' Universit\u00e0 di Ferrara", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "67"
          }
        ], 
        "keywords": [
          "representation", 
          "group", 
          "basis", 
          "irreducibility", 
          "free group", 
          "indeterminate variables", 
          "variables", 
          "irreducible components", 
          "components", 
          "values", 
          "products", 
          "cases", 
          "extension", 
          "groups of bases", 
          "automorphisms", 
          "Valerij G. Bardakov", 
          "G. Bardakov", 
          "Bardakov", 
          "tensor product", 
          "irreduciblity", 
          "extensions of Burau", 
          "Burau", 
          "Gassner representation"
        ], 
        "name": "On the irreducibility of the extensions of Burau and Gassner representations", 
        "pagination": "415-434", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141220759"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11565-021-00376-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11565-021-00376-4", 
          "https://app.dimensions.ai/details/publication/pub.1141220759"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_876.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11565-021-00376-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    88 TRIPLES      22 PREDICATES      48 URIs      40 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11565-021-00376-4 schema:about anzsrc-for:01
    2 schema:author Na86c1612865d4b88b7af5c74d7c4c0c5
    3 schema:citation sg:pub.10.1007/bf02940722
    4 schema:datePublished 2021-09-18
    5 schema:datePublishedReg 2021-09-18
    6 schema:description Let Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document} be the group of basis conjugating automorphisms of a free group Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_n$$\end{document}, and Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} the group of conjugating automorphisms of Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_n$$\end{document}. Valerij G. Bardakov has constructed representations of Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document}, Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} in the groups GLn(Z[t1±1,…,tn±1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {Z}[{t_1}^{\pm 1}, \ldots ,{t_n}^{\pm 1}])$$\end{document} and in GLn(Z[t±1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {Z}[{t}^{\pm 1}])$$\end{document} respectively, where t1,…,tn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_1, \ldots , t_n, t$$\end{document} are indeterminate variables. We show that these representations are reducible and we determine the irreducible components of the representations in GLn(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {C})$$\end{document}, which are obtained by giving values to the variables above. Next, we consider the tensor product of the representations of Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document}, Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} and study their irreduciblity in the case n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document}.
    7 schema:genre article
    8 schema:inLanguage en
    9 schema:isAccessibleForFree true
    10 schema:isPartOf N4b27d0d6bd8f43b3b9d2d3742e48b6ae
    11 N75d2eac498614db8979054ef923d6c87
    12 sg:journal.1136062
    13 schema:keywords Bardakov
    14 Burau
    15 G. Bardakov
    16 Gassner representation
    17 Valerij G. Bardakov
    18 automorphisms
    19 basis
    20 cases
    21 components
    22 extension
    23 extensions of Burau
    24 free group
    25 group
    26 groups of bases
    27 indeterminate variables
    28 irreducibility
    29 irreducible components
    30 irreduciblity
    31 products
    32 representation
    33 tensor product
    34 values
    35 variables
    36 schema:name On the irreducibility of the extensions of Burau and Gassner representations
    37 schema:pagination 415-434
    38 schema:productId N5bc04414f3cf4f24b0944e0681c3a8c0
    39 Nd424098b493e41a5b0c68c37e299931a
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141220759
    41 https://doi.org/10.1007/s11565-021-00376-4
    42 schema:sdDatePublished 2022-01-01T18:56
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Nd78a37d350c140608fd8ebdb68cee1b0
    45 schema:url https://doi.org/10.1007/s11565-021-00376-4
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N176e3745176745eda0b1c25ebad512d4 rdf:first sg:person.010655147447.41
    50 rdf:rest rdf:nil
    51 N4b27d0d6bd8f43b3b9d2d3742e48b6ae schema:volumeNumber 67
    52 rdf:type schema:PublicationVolume
    53 N5bc04414f3cf4f24b0944e0681c3a8c0 schema:name dimensions_id
    54 schema:value pub.1141220759
    55 rdf:type schema:PropertyValue
    56 N75d2eac498614db8979054ef923d6c87 schema:issueNumber 2
    57 rdf:type schema:PublicationIssue
    58 Na86c1612865d4b88b7af5c74d7c4c0c5 rdf:first sg:person.016447442171.46
    59 rdf:rest N176e3745176745eda0b1c25ebad512d4
    60 Nd424098b493e41a5b0c68c37e299931a schema:name doi
    61 schema:value 10.1007/s11565-021-00376-4
    62 rdf:type schema:PropertyValue
    63 Nd78a37d350c140608fd8ebdb68cee1b0 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Mathematical Sciences
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1136062 schema:issn 0430-3202
    69 1827-1510
    70 schema:name Annali dell' Università di Ferrara
    71 schema:publisher Springer Nature
    72 rdf:type schema:Periodical
    73 sg:person.010655147447.41 schema:affiliation grid-institutes:grid.18112.3b
    74 schema:familyName Abdulrahim
    75 schema:givenName Mohammad N.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655147447.41
    77 rdf:type schema:Person
    78 sg:person.016447442171.46 schema:affiliation grid-institutes:grid.18112.3b
    79 schema:familyName Nasser
    80 schema:givenName Mohamad N.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447442171.46
    82 rdf:type schema:Person
    83 sg:pub.10.1007/bf02940722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034465503
    84 https://doi.org/10.1007/bf02940722
    85 rdf:type schema:CreativeWork
    86 grid-institutes:grid.18112.3b schema:alternateName Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon
    87 schema:name Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon
    88 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...