Ontology type: schema:ScholarlyArticle Open Access: True
2021-09-18
AUTHORSMohamad N. Nasser, Mohammad N. Abdulrahim
ABSTRACTLet Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document} be the group of basis conjugating automorphisms of a free group Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_n$$\end{document}, and Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} the group of conjugating automorphisms of Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_n$$\end{document}. Valerij G. Bardakov has constructed representations of Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document}, Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} in the groups GLn(Z[t1±1,…,tn±1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {Z}[{t_1}^{\pm 1}, \ldots ,{t_n}^{\pm 1}])$$\end{document} and in GLn(Z[t±1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {Z}[{t}^{\pm 1}])$$\end{document} respectively, where t1,…,tn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_1, \ldots , t_n, t$$\end{document} are indeterminate variables. We show that these representations are reducible and we determine the irreducible components of the representations in GLn(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {C})$$\end{document}, which are obtained by giving values to the variables above. Next, we consider the tensor product of the representations of Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document}, Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} and study their irreduciblity in the case n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document}. More... »
PAGES415-434
http://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4
DOIhttp://dx.doi.org/10.1007/s11565-021-00376-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141220759
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon",
"id": "http://www.grid.ac/institutes/grid.18112.3b",
"name": [
"Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon"
],
"type": "Organization"
},
"familyName": "Nasser",
"givenName": "Mohamad N.",
"id": "sg:person.016447442171.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447442171.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon",
"id": "http://www.grid.ac/institutes/grid.18112.3b",
"name": [
"Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon"
],
"type": "Organization"
},
"familyName": "Abdulrahim",
"givenName": "Mohammad N.",
"id": "sg:person.010655147447.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655147447.41"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02940722",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034465503",
"https://doi.org/10.1007/bf02940722"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-09-18",
"datePublishedReg": "2021-09-18",
"description": "Let Cbn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Cb_n$$\\end{document} be the group of basis conjugating automorphisms of a free group Fn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {F}_n$$\\end{document}, and Cn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_n$$\\end{document} the group of conjugating automorphisms of Fn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {F}_n$$\\end{document}. Valerij G. Bardakov has constructed representations of Cbn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Cb_n$$\\end{document}, Cn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_n$$\\end{document} in the groups GLn(Z[t1\u00b11,\u2026,tn\u00b11])\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$GL_n(\\mathbb {Z}[{t_1}^{\\pm 1}, \\ldots ,{t_n}^{\\pm 1}])$$\\end{document} and in GLn(Z[t\u00b11])\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$GL_n(\\mathbb {Z}[{t}^{\\pm 1}])$$\\end{document} respectively, where t1,\u2026,tn,t\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$t_1, \\ldots , t_n, t$$\\end{document} are indeterminate variables. We show that these representations are reducible and we determine the irreducible components of the representations in GLn(C)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$GL_n(\\mathbb {C})$$\\end{document}, which are obtained by giving values to the variables above. Next, we consider the tensor product of the representations of Cbn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Cb_n$$\\end{document}, Cn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_n$$\\end{document} and study their irreduciblity in the case n=3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n=3$$\\end{document}.",
"genre": "article",
"id": "sg:pub.10.1007/s11565-021-00376-4",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136062",
"issn": [
"0430-3202",
"1827-1510"
],
"name": "Annali dell' Universit\u00e0 di Ferrara",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "67"
}
],
"keywords": [
"representation",
"group",
"basis",
"irreducibility",
"free group",
"indeterminate variables",
"variables",
"irreducible components",
"components",
"values",
"products",
"cases",
"extension",
"groups of bases",
"automorphisms",
"Bardakov",
"tensor product",
"irreduciblity",
"Burau",
"Gassner representation"
],
"name": "On the irreducibility of the extensions of Burau and Gassner representations",
"pagination": "415-434",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141220759"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11565-021-00376-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11565-021-00376-4",
"https://app.dimensions.ai/details/publication/pub.1141220759"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_888.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11565-021-00376-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4'
This table displays all metadata directly associated to this object as RDF triples.
85 TRIPLES
22 PREDICATES
45 URIs
37 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11565-021-00376-4 | schema:about | anzsrc-for:01 |
2 | ″ | schema:author | N01a158dcb662426d9f60841f006d73e4 |
3 | ″ | schema:citation | sg:pub.10.1007/bf02940722 |
4 | ″ | schema:datePublished | 2021-09-18 |
5 | ″ | schema:datePublishedReg | 2021-09-18 |
6 | ″ | schema:description | Let Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document} be the group of basis conjugating automorphisms of a free group Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_n$$\end{document}, and Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} the group of conjugating automorphisms of Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_n$$\end{document}. Valerij G. Bardakov has constructed representations of Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document}, Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} in the groups GLn(Z[t1±1,…,tn±1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {Z}[{t_1}^{\pm 1}, \ldots ,{t_n}^{\pm 1}])$$\end{document} and in GLn(Z[t±1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {Z}[{t}^{\pm 1}])$$\end{document} respectively, where t1,…,tn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_1, \ldots , t_n, t$$\end{document} are indeterminate variables. We show that these representations are reducible and we determine the irreducible components of the representations in GLn(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {C})$$\end{document}, which are obtained by giving values to the variables above. Next, we consider the tensor product of the representations of Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document}, Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} and study their irreduciblity in the case n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document}. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | true |
10 | ″ | schema:isPartOf | N09756cbaaac74eafb7e7fb9104e98aeb |
11 | ″ | ″ | Nae406b51924242d5891ffb7596c399cc |
12 | ″ | ″ | sg:journal.1136062 |
13 | ″ | schema:keywords | Bardakov |
14 | ″ | ″ | Burau |
15 | ″ | ″ | Gassner representation |
16 | ″ | ″ | automorphisms |
17 | ″ | ″ | basis |
18 | ″ | ″ | cases |
19 | ″ | ″ | components |
20 | ″ | ″ | extension |
21 | ″ | ″ | free group |
22 | ″ | ″ | group |
23 | ″ | ″ | groups of bases |
24 | ″ | ″ | indeterminate variables |
25 | ″ | ″ | irreducibility |
26 | ″ | ″ | irreducible components |
27 | ″ | ″ | irreduciblity |
28 | ″ | ″ | products |
29 | ″ | ″ | representation |
30 | ″ | ″ | tensor product |
31 | ″ | ″ | values |
32 | ″ | ″ | variables |
33 | ″ | schema:name | On the irreducibility of the extensions of Burau and Gassner representations |
34 | ″ | schema:pagination | 415-434 |
35 | ″ | schema:productId | N23eec072225d4b8eb13db7f0ac6e23d7 |
36 | ″ | ″ | Nca0a4ee6137040d49ff54cff264f39c8 |
37 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1141220759 |
38 | ″ | ″ | https://doi.org/10.1007/s11565-021-00376-4 |
39 | ″ | schema:sdDatePublished | 2022-05-10T10:29 |
40 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
41 | ″ | schema:sdPublisher | N2c0ae25d930946509ed89db05be51fb9 |
42 | ″ | schema:url | https://doi.org/10.1007/s11565-021-00376-4 |
43 | ″ | sgo:license | sg:explorer/license/ |
44 | ″ | sgo:sdDataset | articles |
45 | ″ | rdf:type | schema:ScholarlyArticle |
46 | N01a158dcb662426d9f60841f006d73e4 | rdf:first | sg:person.016447442171.46 |
47 | ″ | rdf:rest | N6eeacaaa6c464e8d8ce46159279e803d |
48 | N09756cbaaac74eafb7e7fb9104e98aeb | schema:issueNumber | 2 |
49 | ″ | rdf:type | schema:PublicationIssue |
50 | N23eec072225d4b8eb13db7f0ac6e23d7 | schema:name | dimensions_id |
51 | ″ | schema:value | pub.1141220759 |
52 | ″ | rdf:type | schema:PropertyValue |
53 | N2c0ae25d930946509ed89db05be51fb9 | schema:name | Springer Nature - SN SciGraph project |
54 | ″ | rdf:type | schema:Organization |
55 | N6eeacaaa6c464e8d8ce46159279e803d | rdf:first | sg:person.010655147447.41 |
56 | ″ | rdf:rest | rdf:nil |
57 | Nae406b51924242d5891ffb7596c399cc | schema:volumeNumber | 67 |
58 | ″ | rdf:type | schema:PublicationVolume |
59 | Nca0a4ee6137040d49ff54cff264f39c8 | schema:name | doi |
60 | ″ | schema:value | 10.1007/s11565-021-00376-4 |
61 | ″ | rdf:type | schema:PropertyValue |
62 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
63 | ″ | schema:name | Mathematical Sciences |
64 | ″ | rdf:type | schema:DefinedTerm |
65 | sg:journal.1136062 | schema:issn | 0430-3202 |
66 | ″ | ″ | 1827-1510 |
67 | ″ | schema:name | Annali dell' Università di Ferrara |
68 | ″ | schema:publisher | Springer Nature |
69 | ″ | rdf:type | schema:Periodical |
70 | sg:person.010655147447.41 | schema:affiliation | grid-institutes:grid.18112.3b |
71 | ″ | schema:familyName | Abdulrahim |
72 | ″ | schema:givenName | Mohammad N. |
73 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655147447.41 |
74 | ″ | rdf:type | schema:Person |
75 | sg:person.016447442171.46 | schema:affiliation | grid-institutes:grid.18112.3b |
76 | ″ | schema:familyName | Nasser |
77 | ″ | schema:givenName | Mohamad N. |
78 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447442171.46 |
79 | ″ | rdf:type | schema:Person |
80 | sg:pub.10.1007/bf02940722 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034465503 |
81 | ″ | ″ | https://doi.org/10.1007/bf02940722 |
82 | ″ | rdf:type | schema:CreativeWork |
83 | grid-institutes:grid.18112.3b | schema:alternateName | Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon |
84 | ″ | schema:name | Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon |
85 | ″ | rdf:type | schema:Organization |