On the irreducibility of the extensions of Burau and Gassner representations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-18

AUTHORS

Mohamad N. Nasser, Mohammad N. Abdulrahim

ABSTRACT

Let Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document} be the group of basis conjugating automorphisms of a free group Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_n$$\end{document}, and Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} the group of conjugating automorphisms of Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_n$$\end{document}. Valerij G. Bardakov has constructed representations of Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document}, Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} in the groups GLn(Z[t1±1,…,tn±1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {Z}[{t_1}^{\pm 1}, \ldots ,{t_n}^{\pm 1}])$$\end{document} and in GLn(Z[t±1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {Z}[{t}^{\pm 1}])$$\end{document} respectively, where t1,…,tn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_1, \ldots , t_n, t$$\end{document} are indeterminate variables. We show that these representations are reducible and we determine the irreducible components of the representations in GLn(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {C})$$\end{document}, which are obtained by giving values to the variables above. Next, we consider the tensor product of the representations of Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document}, Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} and study their irreduciblity in the case n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document}. More... »

PAGES

415-434

References to SciGraph publications

  • 1935-12. Über Zopfgruppen und gleichsinnig verdrillte Verkettungen in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4

    DOI

    http://dx.doi.org/10.1007/s11565-021-00376-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141220759


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon", 
              "id": "http://www.grid.ac/institutes/grid.18112.3b", 
              "name": [
                "Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nasser", 
            "givenName": "Mohamad N.", 
            "id": "sg:person.016447442171.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447442171.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon", 
              "id": "http://www.grid.ac/institutes/grid.18112.3b", 
              "name": [
                "Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abdulrahim", 
            "givenName": "Mohammad N.", 
            "id": "sg:person.010655147447.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655147447.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02940722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034465503", 
              "https://doi.org/10.1007/bf02940722"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-18", 
        "datePublishedReg": "2021-09-18", 
        "description": "Let Cbn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Cb_n$$\\end{document} be the group of basis conjugating automorphisms of a free group Fn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {F}_n$$\\end{document}, and Cn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_n$$\\end{document} the group of conjugating automorphisms of Fn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {F}_n$$\\end{document}. Valerij G. Bardakov has constructed representations of Cbn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Cb_n$$\\end{document}, Cn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_n$$\\end{document} in the groups GLn(Z[t1\u00b11,\u2026,tn\u00b11])\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$GL_n(\\mathbb {Z}[{t_1}^{\\pm 1}, \\ldots ,{t_n}^{\\pm 1}])$$\\end{document} and in GLn(Z[t\u00b11])\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$GL_n(\\mathbb {Z}[{t}^{\\pm 1}])$$\\end{document} respectively, where t1,\u2026,tn,t\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$t_1, \\ldots , t_n, t$$\\end{document} are indeterminate variables. We show that these representations are reducible and we determine the irreducible components of the representations in GLn(C)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$GL_n(\\mathbb {C})$$\\end{document}, which are obtained by giving values to the variables above. Next, we consider the tensor product of the representations of Cbn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$Cb_n$$\\end{document}, Cn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C_n$$\\end{document} and study their irreduciblity in the case n=3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n=3$$\\end{document}.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11565-021-00376-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136062", 
            "issn": [
              "0430-3202", 
              "1827-1510"
            ], 
            "name": "Annali dell' Universit\u00e0 di Ferrara", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "67"
          }
        ], 
        "keywords": [
          "representation", 
          "group", 
          "basis", 
          "irreducibility", 
          "free group", 
          "indeterminate variables", 
          "variables", 
          "irreducible components", 
          "components", 
          "values", 
          "products", 
          "cases", 
          "extension", 
          "groups of bases", 
          "automorphisms", 
          "Bardakov", 
          "tensor product", 
          "irreduciblity", 
          "Burau", 
          "Gassner representation"
        ], 
        "name": "On the irreducibility of the extensions of Burau and Gassner representations", 
        "pagination": "415-434", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141220759"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11565-021-00376-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11565-021-00376-4", 
          "https://app.dimensions.ai/details/publication/pub.1141220759"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_888.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11565-021-00376-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00376-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    85 TRIPLES      22 PREDICATES      45 URIs      37 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11565-021-00376-4 schema:about anzsrc-for:01
    2 schema:author N01a158dcb662426d9f60841f006d73e4
    3 schema:citation sg:pub.10.1007/bf02940722
    4 schema:datePublished 2021-09-18
    5 schema:datePublishedReg 2021-09-18
    6 schema:description Let Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document} be the group of basis conjugating automorphisms of a free group Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_n$$\end{document}, and Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} the group of conjugating automorphisms of Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_n$$\end{document}. Valerij G. Bardakov has constructed representations of Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document}, Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} in the groups GLn(Z[t1±1,…,tn±1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {Z}[{t_1}^{\pm 1}, \ldots ,{t_n}^{\pm 1}])$$\end{document} and in GLn(Z[t±1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {Z}[{t}^{\pm 1}])$$\end{document} respectively, where t1,…,tn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_1, \ldots , t_n, t$$\end{document} are indeterminate variables. We show that these representations are reducible and we determine the irreducible components of the representations in GLn(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n(\mathbb {C})$$\end{document}, which are obtained by giving values to the variables above. Next, we consider the tensor product of the representations of Cbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cb_n$$\end{document}, Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} and study their irreduciblity in the case n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document}.
    7 schema:genre article
    8 schema:inLanguage en
    9 schema:isAccessibleForFree true
    10 schema:isPartOf N09756cbaaac74eafb7e7fb9104e98aeb
    11 Nae406b51924242d5891ffb7596c399cc
    12 sg:journal.1136062
    13 schema:keywords Bardakov
    14 Burau
    15 Gassner representation
    16 automorphisms
    17 basis
    18 cases
    19 components
    20 extension
    21 free group
    22 group
    23 groups of bases
    24 indeterminate variables
    25 irreducibility
    26 irreducible components
    27 irreduciblity
    28 products
    29 representation
    30 tensor product
    31 values
    32 variables
    33 schema:name On the irreducibility of the extensions of Burau and Gassner representations
    34 schema:pagination 415-434
    35 schema:productId N23eec072225d4b8eb13db7f0ac6e23d7
    36 Nca0a4ee6137040d49ff54cff264f39c8
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141220759
    38 https://doi.org/10.1007/s11565-021-00376-4
    39 schema:sdDatePublished 2022-05-10T10:29
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N2c0ae25d930946509ed89db05be51fb9
    42 schema:url https://doi.org/10.1007/s11565-021-00376-4
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N01a158dcb662426d9f60841f006d73e4 rdf:first sg:person.016447442171.46
    47 rdf:rest N6eeacaaa6c464e8d8ce46159279e803d
    48 N09756cbaaac74eafb7e7fb9104e98aeb schema:issueNumber 2
    49 rdf:type schema:PublicationIssue
    50 N23eec072225d4b8eb13db7f0ac6e23d7 schema:name dimensions_id
    51 schema:value pub.1141220759
    52 rdf:type schema:PropertyValue
    53 N2c0ae25d930946509ed89db05be51fb9 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N6eeacaaa6c464e8d8ce46159279e803d rdf:first sg:person.010655147447.41
    56 rdf:rest rdf:nil
    57 Nae406b51924242d5891ffb7596c399cc schema:volumeNumber 67
    58 rdf:type schema:PublicationVolume
    59 Nca0a4ee6137040d49ff54cff264f39c8 schema:name doi
    60 schema:value 10.1007/s11565-021-00376-4
    61 rdf:type schema:PropertyValue
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1136062 schema:issn 0430-3202
    66 1827-1510
    67 schema:name Annali dell' Università di Ferrara
    68 schema:publisher Springer Nature
    69 rdf:type schema:Periodical
    70 sg:person.010655147447.41 schema:affiliation grid-institutes:grid.18112.3b
    71 schema:familyName Abdulrahim
    72 schema:givenName Mohammad N.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655147447.41
    74 rdf:type schema:Person
    75 sg:person.016447442171.46 schema:affiliation grid-institutes:grid.18112.3b
    76 schema:familyName Nasser
    77 schema:givenName Mohamad N.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447442171.46
    79 rdf:type schema:Person
    80 sg:pub.10.1007/bf02940722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034465503
    81 https://doi.org/10.1007/bf02940722
    82 rdf:type schema:CreativeWork
    83 grid-institutes:grid.18112.3b schema:alternateName Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon
    84 schema:name Department of Mathematics and Computer Science, Beirut Arab University, 11-5020, Beirut, Lebanon
    85 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...