# On an operator preserving inequalities between polynomials

Ontology type: schema:ScholarlyArticle

### Article Info

DATE

2021-09-20

AUTHORS ABSTRACT

Let P(z) be a polynomial of degree at most n. We consider an operator N, which carries a polynomial P(z) into N[P](z):=∑j=0mλj(nz2)jP(j)(z)j!,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} N[P](z):=\sum \limits _{j=0}^{m}\lambda _j\bigg (\frac{nz}{2}\bigg )^j\frac{P^{(j)}(z)}{j!}, \end{aligned}\end{document}where λ0,λ1,…,λm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _0,\lambda _1,\ldots ,\lambda _m$$\end{document} are such that all the zeros of u(z)=∑j=0mnjλjzj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} u(z)=\sum \limits _{j=0}^{m}\left( {\begin{array}{c}n\\ j\end{array}}\right) \lambda _jz^j \end{aligned}\end{document}lie in the half plane |z|≤|z-n2|.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} |z|\le \bigg |z-\frac{n}{2}\bigg |. \end{aligned}\end{document}In this paper, we estimate the minimum and maximum modulii of N[P(z)] on |z|=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|=1$$\end{document} with restrictions on the zeros of P(z) and thereby obtain compact generalizations of some well known polynomial inequalities. More... »

PAGES

285-292

### Journal

TITLE

Annali dell' Università di Ferrara

ISSUE

2

VOLUME

67

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11565-021-00375-5

DOI

http://dx.doi.org/10.1007/s11565-021-00375-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141239888

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, National Institute of Technology, 190006, Srinagar, J&K, India",
"id": "http://www.grid.ac/institutes/grid.419487.7",
"name": [
"Department of Mathematics, National Institute of Technology, 190006, Srinagar, J&K, India"
],
"type": "Organization"
},
"familyName": "Hussain",
"givenName": "Imtiaz",
"id": "sg:person.010104715710.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010104715710.91"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, National Institute of Technology, 190006, Srinagar, J&K, India",
"id": "http://www.grid.ac/institutes/grid.419487.7",
"name": [
"Department of Mathematics, National Institute of Technology, 190006, Srinagar, J&K, India"
],
"type": "Organization"
},
"familyName": "Liman",
"givenName": "A.",
"id": "sg:person.013241354317.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013241354317.42"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11139-020-00261-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1129503502",
"https://doi.org/10.1007/s11139-020-00261-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02418550",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012406114",
"https://doi.org/10.1007/bf02418550"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-09-20",
"datePublishedReg": "2021-09-20",
"description": "Let P(z) be a polynomial of degree at most n. We consider an operator N, which carries a polynomial P(z) into N[P](z):=\u2211j=0m\u03bbj(nz2)jP(j)(z)j!,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\\begin{aligned} N[P](z):=\\sum \\limits _{j=0}^{m}\\lambda _j\\bigg (\\frac{nz}{2}\\bigg )^j\\frac{P^{(j)}(z)}{j!}, \\end{aligned}\\end{document}where \u03bb0,\u03bb1,\u2026,\u03bbm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\lambda _0,\\lambda _1,\\ldots ,\\lambda _m$$\\end{document} are such that all the zeros of u(z)=\u2211j=0mnj\u03bbjzj\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\\begin{aligned} u(z)=\\sum \\limits _{j=0}^{m}\\left( {\\begin{array}{c}n\\\\ j\\end{array}}\\right) \\lambda _jz^j \\end{aligned}\\end{document}lie in the half plane |z|\u2264|z-n2|.\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\\begin{aligned} |z|\\le \\bigg |z-\\frac{n}{2}\\bigg |. \\end{aligned}\\end{document}In this paper, we estimate the minimum and maximum modulii of N[P(z)] on |z|=1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$|z|=1$$\\end{document} with restrictions on the zeros of P(z) and thereby obtain compact generalizations of some well known polynomial inequalities.",
"genre": "article",
"id": "sg:pub.10.1007/s11565-021-00375-5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136062",
"issn": [
"0430-3202",
"1827-1510"
],
"name": "Annali dell' Universit\u00e0 di Ferrara",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"polynomials of degree",
"polynomials",
"operator N",
"zeros",
"half plane",
"compact generalization",
"polynomial inequalities",
"plane",
"modulii",
"restriction",
"generalization",
"inequality",
"operators",
"degree",
"paper"
],
"name": "On an operator preserving inequalities between polynomials",
"pagination": "285-292",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141239888"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11565-021-00375-5"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11565-021-00375-5",
"https://app.dimensions.ai/details/publication/pub.1141239888"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_898.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11565-021-00375-5"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00375-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00375-5'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00375-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00375-5'

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      22 PREDICATES      41 URIs      32 LITERALS      6 BLANK NODES

Subject Predicate Object
2 schema:author N5986b640be4d4633917b4fe9ae72be6f
3 schema:citation sg:pub.10.1007/bf02418550
4 sg:pub.10.1007/s11139-020-00261-2
5 schema:datePublished 2021-09-20
6 schema:datePublishedReg 2021-09-20
7 schema:description Let P(z) be a polynomial of degree at most n. We consider an operator N, which carries a polynomial P(z) into N[P](z):=∑j=0mλj(nz2)jP(j)(z)j!,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} N[P](z):=\sum \limits _{j=0}^{m}\lambda _j\bigg (\frac{nz}{2}\bigg )^j\frac{P^{(j)}(z)}{j!}, \end{aligned}\end{document}where λ0,λ1,…,λm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _0,\lambda _1,\ldots ,\lambda _m$$\end{document} are such that all the zeros of u(z)=∑j=0mnjλjzj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} u(z)=\sum \limits _{j=0}^{m}\left( {\begin{array}{c}n\\ j\end{array}}\right) \lambda _jz^j \end{aligned}\end{document}lie in the half plane |z|≤|z-n2|.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} |z|\le \bigg |z-\frac{n}{2}\bigg |. \end{aligned}\end{document}In this paper, we estimate the minimum and maximum modulii of N[P(z)] on |z|=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|=1$$\end{document} with restrictions on the zeros of P(z) and thereby obtain compact generalizations of some well known polynomial inequalities.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N761b1f5c00b04993bb50350f76e117a4
13 sg:journal.1136062
14 schema:keywords compact generalization
15 degree
16 generalization
17 half plane
18 inequality
19 modulii
20 operator N
21 operators
22 paper
23 plane
24 polynomial inequalities
25 polynomials
26 polynomials of degree
27 restriction
28 zeros
29 schema:name On an operator preserving inequalities between polynomials
30 schema:pagination 285-292
31 schema:productId N52290dc24f2a4975b6fed661e880c92c
32 Nb7c45e1593e645cbb9683a7f8e554a2c
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141239888
34 https://doi.org/10.1007/s11565-021-00375-5
35 schema:sdDatePublished 2022-05-20T07:39
37 schema:sdPublisher N744f3b5b55014d4894eb289e7aa746e2
38 schema:url https://doi.org/10.1007/s11565-021-00375-5
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N52290dc24f2a4975b6fed661e880c92c schema:name dimensions_id
43 schema:value pub.1141239888
44 rdf:type schema:PropertyValue
45 N5986b640be4d4633917b4fe9ae72be6f rdf:first sg:person.010104715710.91
46 rdf:rest N71d4ce007517422595b593cc7ef2247f
47 N71d4ce007517422595b593cc7ef2247f rdf:first sg:person.013241354317.42
48 rdf:rest rdf:nil
49 N744f3b5b55014d4894eb289e7aa746e2 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
52 rdf:type schema:PublicationVolume
54 rdf:type schema:PublicationIssue
55 Nb7c45e1593e645cbb9683a7f8e554a2c schema:name doi
56 schema:value 10.1007/s11565-021-00375-5
57 rdf:type schema:PropertyValue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 sg:journal.1136062 schema:issn 0430-3202
62 1827-1510
63 schema:name Annali dell' Università di Ferrara
64 schema:publisher Springer Nature
65 rdf:type schema:Periodical
66 sg:person.010104715710.91 schema:affiliation grid-institutes:grid.419487.7
67 schema:familyName Hussain
68 schema:givenName Imtiaz
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010104715710.91
70 rdf:type schema:Person
71 sg:person.013241354317.42 schema:affiliation grid-institutes:grid.419487.7
72 schema:familyName Liman
73 schema:givenName A.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013241354317.42
75 rdf:type schema:Person
76 sg:pub.10.1007/bf02418550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012406114
77 https://doi.org/10.1007/bf02418550
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/s11139-020-00261-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129503502
80 https://doi.org/10.1007/s11139-020-00261-2
81 rdf:type schema:CreativeWork
82 grid-institutes:grid.419487.7 schema:alternateName Department of Mathematics, National Institute of Technology, 190006, Srinagar, J&K, India
83 schema:name Department of Mathematics, National Institute of Technology, 190006, Srinagar, J&K, India
84 rdf:type schema:Organization