Ontology type: schema:ScholarlyArticle
2021-09-20
AUTHORS ABSTRACTLet P(z) be a polynomial of degree at most n. We consider an operator N, which carries a polynomial P(z) into N[P](z):=∑j=0mλj(nz2)jP(j)(z)j!,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} N[P](z):=\sum \limits _{j=0}^{m}\lambda _j\bigg (\frac{nz}{2}\bigg )^j\frac{P^{(j)}(z)}{j!}, \end{aligned}$$\end{document}where λ0,λ1,…,λm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _0,\lambda _1,\ldots ,\lambda _m$$\end{document} are such that all the zeros of u(z)=∑j=0mnjλjzj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u(z)=\sum \limits _{j=0}^{m}\left( {\begin{array}{c}n\\ j\end{array}}\right) \lambda _jz^j \end{aligned}$$\end{document}lie in the half plane |z|≤|z-n2|.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |z|\le \bigg |z-\frac{n}{2}\bigg |. \end{aligned}$$\end{document}In this paper, we estimate the minimum and maximum modulii of N[P(z)] on |z|=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|=1$$\end{document} with restrictions on the zeros of P(z) and thereby obtain compact generalizations of some well known polynomial inequalities. More... »
PAGES285-292
http://scigraph.springernature.com/pub.10.1007/s11565-021-00375-5
DOIhttp://dx.doi.org/10.1007/s11565-021-00375-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141239888
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, National Institute of Technology, 190006, Srinagar, J&K, India",
"id": "http://www.grid.ac/institutes/grid.419487.7",
"name": [
"Department of Mathematics, National Institute of Technology, 190006, Srinagar, J&K, India"
],
"type": "Organization"
},
"familyName": "Hussain",
"givenName": "Imtiaz",
"id": "sg:person.010104715710.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010104715710.91"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, National Institute of Technology, 190006, Srinagar, J&K, India",
"id": "http://www.grid.ac/institutes/grid.419487.7",
"name": [
"Department of Mathematics, National Institute of Technology, 190006, Srinagar, J&K, India"
],
"type": "Organization"
},
"familyName": "Liman",
"givenName": "A.",
"id": "sg:person.013241354317.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013241354317.42"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11139-020-00261-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1129503502",
"https://doi.org/10.1007/s11139-020-00261-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02418550",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012406114",
"https://doi.org/10.1007/bf02418550"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-09-20",
"datePublishedReg": "2021-09-20",
"description": "Let P(z) be a polynomial of degree at most n. We consider an operator N, which carries a polynomial P(z) into N[P](z):=\u2211j=0m\u03bbj(nz2)jP(j)(z)j!,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\begin{aligned} N[P](z):=\\sum \\limits _{j=0}^{m}\\lambda _j\\bigg (\\frac{nz}{2}\\bigg )^j\\frac{P^{(j)}(z)}{j!}, \\end{aligned}$$\\end{document}where \u03bb0,\u03bb1,\u2026,\u03bbm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\lambda _0,\\lambda _1,\\ldots ,\\lambda _m$$\\end{document} are such that all the zeros of u(z)=\u2211j=0mnj\u03bbjzj\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\begin{aligned} u(z)=\\sum \\limits _{j=0}^{m}\\left( {\\begin{array}{c}n\\\\ j\\end{array}}\\right) \\lambda _jz^j \\end{aligned}$$\\end{document}lie in the half plane |z|\u2264|z-n2|.\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\begin{aligned} |z|\\le \\bigg |z-\\frac{n}{2}\\bigg |. \\end{aligned}$$\\end{document}In this paper, we estimate the minimum and maximum modulii of N[P(z)] on |z|=1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$|z|=1$$\\end{document} with restrictions on the zeros of P(z) and thereby obtain compact generalizations of some well known polynomial inequalities.",
"genre": "article",
"id": "sg:pub.10.1007/s11565-021-00375-5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136062",
"issn": [
"0430-3202",
"1827-1510"
],
"name": "Annali dell' Universit\u00e0 di Ferrara",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "67"
}
],
"keywords": [
"polynomials of degree",
"polynomials",
"operator N",
"zeros",
"half plane",
"compact generalization",
"polynomial inequalities",
"plane",
"modulii",
"restriction",
"generalization",
"inequality",
"operators",
"degree",
"paper"
],
"name": "On an operator preserving inequalities between polynomials",
"pagination": "285-292",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141239888"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11565-021-00375-5"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11565-021-00375-5",
"https://app.dimensions.ai/details/publication/pub.1141239888"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_898.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11565-021-00375-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00375-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00375-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00375-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00375-5'
This table displays all metadata directly associated to this object as RDF triples.
84 TRIPLES
22 PREDICATES
41 URIs
32 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11565-021-00375-5 | schema:about | anzsrc-for:01 |
2 | ″ | schema:author | N5986b640be4d4633917b4fe9ae72be6f |
3 | ″ | schema:citation | sg:pub.10.1007/bf02418550 |
4 | ″ | ″ | sg:pub.10.1007/s11139-020-00261-2 |
5 | ″ | schema:datePublished | 2021-09-20 |
6 | ″ | schema:datePublishedReg | 2021-09-20 |
7 | ″ | schema:description | Let P(z) be a polynomial of degree at most n. We consider an operator N, which carries a polynomial P(z) into N[P](z):=∑j=0mλj(nz2)jP(j)(z)j!,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} N[P](z):=\sum \limits _{j=0}^{m}\lambda _j\bigg (\frac{nz}{2}\bigg )^j\frac{P^{(j)}(z)}{j!}, \end{aligned}$$\end{document}where λ0,λ1,…,λm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _0,\lambda _1,\ldots ,\lambda _m$$\end{document} are such that all the zeros of u(z)=∑j=0mnjλjzj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u(z)=\sum \limits _{j=0}^{m}\left( {\begin{array}{c}n\\ j\end{array}}\right) \lambda _jz^j \end{aligned}$$\end{document}lie in the half plane |z|≤|z-n2|.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} |z|\le \bigg |z-\frac{n}{2}\bigg |. \end{aligned}$$\end{document}In this paper, we estimate the minimum and maximum modulii of N[P(z)] on |z|=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|=1$$\end{document} with restrictions on the zeros of P(z) and thereby obtain compact generalizations of some well known polynomial inequalities. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N761b1f5c00b04993bb50350f76e117a4 |
12 | ″ | ″ | Na15b12d067ad422ca9a8c9246c571abe |
13 | ″ | ″ | sg:journal.1136062 |
14 | ″ | schema:keywords | compact generalization |
15 | ″ | ″ | degree |
16 | ″ | ″ | generalization |
17 | ″ | ″ | half plane |
18 | ″ | ″ | inequality |
19 | ″ | ″ | modulii |
20 | ″ | ″ | operator N |
21 | ″ | ″ | operators |
22 | ″ | ″ | paper |
23 | ″ | ″ | plane |
24 | ″ | ″ | polynomial inequalities |
25 | ″ | ″ | polynomials |
26 | ″ | ″ | polynomials of degree |
27 | ″ | ″ | restriction |
28 | ″ | ″ | zeros |
29 | ″ | schema:name | On an operator preserving inequalities between polynomials |
30 | ″ | schema:pagination | 285-292 |
31 | ″ | schema:productId | N52290dc24f2a4975b6fed661e880c92c |
32 | ″ | ″ | Nb7c45e1593e645cbb9683a7f8e554a2c |
33 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1141239888 |
34 | ″ | ″ | https://doi.org/10.1007/s11565-021-00375-5 |
35 | ″ | schema:sdDatePublished | 2022-05-20T07:39 |
36 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
37 | ″ | schema:sdPublisher | N744f3b5b55014d4894eb289e7aa746e2 |
38 | ″ | schema:url | https://doi.org/10.1007/s11565-021-00375-5 |
39 | ″ | sgo:license | sg:explorer/license/ |
40 | ″ | sgo:sdDataset | articles |
41 | ″ | rdf:type | schema:ScholarlyArticle |
42 | N52290dc24f2a4975b6fed661e880c92c | schema:name | dimensions_id |
43 | ″ | schema:value | pub.1141239888 |
44 | ″ | rdf:type | schema:PropertyValue |
45 | N5986b640be4d4633917b4fe9ae72be6f | rdf:first | sg:person.010104715710.91 |
46 | ″ | rdf:rest | N71d4ce007517422595b593cc7ef2247f |
47 | N71d4ce007517422595b593cc7ef2247f | rdf:first | sg:person.013241354317.42 |
48 | ″ | rdf:rest | rdf:nil |
49 | N744f3b5b55014d4894eb289e7aa746e2 | schema:name | Springer Nature - SN SciGraph project |
50 | ″ | rdf:type | schema:Organization |
51 | N761b1f5c00b04993bb50350f76e117a4 | schema:volumeNumber | 67 |
52 | ″ | rdf:type | schema:PublicationVolume |
53 | Na15b12d067ad422ca9a8c9246c571abe | schema:issueNumber | 2 |
54 | ″ | rdf:type | schema:PublicationIssue |
55 | Nb7c45e1593e645cbb9683a7f8e554a2c | schema:name | doi |
56 | ″ | schema:value | 10.1007/s11565-021-00375-5 |
57 | ″ | rdf:type | schema:PropertyValue |
58 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
59 | ″ | schema:name | Mathematical Sciences |
60 | ″ | rdf:type | schema:DefinedTerm |
61 | sg:journal.1136062 | schema:issn | 0430-3202 |
62 | ″ | ″ | 1827-1510 |
63 | ″ | schema:name | Annali dell' Università di Ferrara |
64 | ″ | schema:publisher | Springer Nature |
65 | ″ | rdf:type | schema:Periodical |
66 | sg:person.010104715710.91 | schema:affiliation | grid-institutes:grid.419487.7 |
67 | ″ | schema:familyName | Hussain |
68 | ″ | schema:givenName | Imtiaz |
69 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010104715710.91 |
70 | ″ | rdf:type | schema:Person |
71 | sg:person.013241354317.42 | schema:affiliation | grid-institutes:grid.419487.7 |
72 | ″ | schema:familyName | Liman |
73 | ″ | schema:givenName | A. |
74 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013241354317.42 |
75 | ″ | rdf:type | schema:Person |
76 | sg:pub.10.1007/bf02418550 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012406114 |
77 | ″ | ″ | https://doi.org/10.1007/bf02418550 |
78 | ″ | rdf:type | schema:CreativeWork |
79 | sg:pub.10.1007/s11139-020-00261-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1129503502 |
80 | ″ | ″ | https://doi.org/10.1007/s11139-020-00261-2 |
81 | ″ | rdf:type | schema:CreativeWork |
82 | grid-institutes:grid.419487.7 | schema:alternateName | Department of Mathematics, National Institute of Technology, 190006, Srinagar, J&K, India |
83 | ″ | schema:name | Department of Mathematics, National Institute of Technology, 190006, Srinagar, J&K, India |
84 | ″ | rdf:type | schema:Organization |