Multiplicative Lie triple derivation of triangular 3-matrix rings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-09-25

AUTHORS

Aisha Jabeen, Musheer Ahmad

ABSTRACT

Let T=T3(Ri,Mij)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {T}}={\mathfrak {T}}_3(\mathrm {R}_i, \mathrm {M}_{ij})$$\end{document} be a triangular 3-matrix ring. In the present paper, we study of multiplicative Lie triple derivation on triangular 3-matrix rings and prove that every multiplicative Lie triple derivation on triangular 3-matrix rings can be written as a sum of an additive derivation and a center valued map vanishing at each second commutator. More... »

PAGES

293-308

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11565-021-00374-6

DOI

http://dx.doi.org/10.1007/s11565-021-00374-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141395433


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Sciences & Humanities, Jamia Millia Islamia, 110025, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.411818.5", 
          "name": [
            "Department of Applied Sciences & Humanities, Jamia Millia Islamia, 110025, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jabeen", 
        "givenName": "Aisha", 
        "id": "sg:person.014432162345.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014432162345.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Sciences & Humanities, Jamia Millia Islamia, 110025, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.411818.5", 
          "name": [
            "Department of Applied Sciences & Humanities, Jamia Millia Islamia, 110025, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahmad", 
        "givenName": "Musheer", 
        "id": "sg:person.013101433617.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101433617.80"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-09-25", 
    "datePublishedReg": "2021-09-25", 
    "description": "Let T=T3(Ri,Mij)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathfrak {T}}={\\mathfrak {T}}_3(\\mathrm {R}_i, \\mathrm {M}_{ij})$$\\end{document} be a triangular 3-matrix ring. In the present paper, we study of multiplicative Lie triple derivation on triangular 3-matrix rings and prove that every multiplicative Lie triple derivation on triangular 3-matrix rings can be written as a sum of an additive derivation and a center valued map vanishing at each second commutator.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11565-021-00374-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136062", 
        "issn": [
          "0430-3202", 
          "1827-1510"
        ], 
        "name": "Annali dell' Universit\u00e0 di Ferrara", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "keywords": [
      "present paper", 
      "derivation", 
      "second commutator", 
      "maps", 
      "ring", 
      "paper", 
      "sum", 
      "center", 
      "commutators", 
      "triple derivation", 
      "Lie triple derivation", 
      "additive derivation", 
      "multiplicative Lie triple derivation"
    ], 
    "name": "Multiplicative Lie triple derivation of triangular 3-matrix rings", 
    "pagination": "293-308", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141395433"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11565-021-00374-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11565-021-00374-6", 
      "https://app.dimensions.ai/details/publication/pub.1141395433"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_890.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11565-021-00374-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00374-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00374-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00374-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00374-6'


 

This table displays all metadata directly associated to this object as RDF triples.

74 TRIPLES      21 PREDICATES      37 URIs      30 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11565-021-00374-6 schema:about anzsrc-for:01
2 schema:author N3011c6b9df514cf895660ca5fb9419bd
3 schema:datePublished 2021-09-25
4 schema:datePublishedReg 2021-09-25
5 schema:description Let T=T3(Ri,Mij)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {T}}={\mathfrak {T}}_3(\mathrm {R}_i, \mathrm {M}_{ij})$$\end{document} be a triangular 3-matrix ring. In the present paper, we study of multiplicative Lie triple derivation on triangular 3-matrix rings and prove that every multiplicative Lie triple derivation on triangular 3-matrix rings can be written as a sum of an additive derivation and a center valued map vanishing at each second commutator.
6 schema:genre article
7 schema:inLanguage en
8 schema:isAccessibleForFree false
9 schema:isPartOf Ncb615c4f2f934068956bf27acff142d9
10 Nd29def7c891c4bf4ab83697b116d567a
11 sg:journal.1136062
12 schema:keywords Lie triple derivation
13 additive derivation
14 center
15 commutators
16 derivation
17 maps
18 multiplicative Lie triple derivation
19 paper
20 present paper
21 ring
22 second commutator
23 sum
24 triple derivation
25 schema:name Multiplicative Lie triple derivation of triangular 3-matrix rings
26 schema:pagination 293-308
27 schema:productId N63f4295846fc415c8775e16d899b62d5
28 Nfc09e8419ee34dffb27b16aa8dc7778d
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141395433
30 https://doi.org/10.1007/s11565-021-00374-6
31 schema:sdDatePublished 2022-01-01T18:58
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N8ac4a9727dca41b7930de20063e21c11
34 schema:url https://doi.org/10.1007/s11565-021-00374-6
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N3011c6b9df514cf895660ca5fb9419bd rdf:first sg:person.014432162345.39
39 rdf:rest Nf8363da943104d17b15ccb08b3a4ee92
40 N63f4295846fc415c8775e16d899b62d5 schema:name doi
41 schema:value 10.1007/s11565-021-00374-6
42 rdf:type schema:PropertyValue
43 N8ac4a9727dca41b7930de20063e21c11 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Ncb615c4f2f934068956bf27acff142d9 schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 Nd29def7c891c4bf4ab83697b116d567a schema:volumeNumber 67
48 rdf:type schema:PublicationVolume
49 Nf8363da943104d17b15ccb08b3a4ee92 rdf:first sg:person.013101433617.80
50 rdf:rest rdf:nil
51 Nfc09e8419ee34dffb27b16aa8dc7778d schema:name dimensions_id
52 schema:value pub.1141395433
53 rdf:type schema:PropertyValue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 sg:journal.1136062 schema:issn 0430-3202
58 1827-1510
59 schema:name Annali dell' Università di Ferrara
60 schema:publisher Springer Nature
61 rdf:type schema:Periodical
62 sg:person.013101433617.80 schema:affiliation grid-institutes:grid.411818.5
63 schema:familyName Ahmad
64 schema:givenName Musheer
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101433617.80
66 rdf:type schema:Person
67 sg:person.014432162345.39 schema:affiliation grid-institutes:grid.411818.5
68 schema:familyName Jabeen
69 schema:givenName Aisha
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014432162345.39
71 rdf:type schema:Person
72 grid-institutes:grid.411818.5 schema:alternateName Department of Applied Sciences & Humanities, Jamia Millia Islamia, 110025, New Delhi, India
73 schema:name Department of Applied Sciences & Humanities, Jamia Millia Islamia, 110025, New Delhi, India
74 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...