Stability analysis for a multi-layer Hele-Shaw displacement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-08-11

AUTHORS

Gelu Paşa

ABSTRACT

A well known approximation for the displacement of two immiscible fluids in a porous medium is the Hele-Shaw model. In experiments it was observed that a liquid with variable viscosity, introduced between the two initial fluids, can minimize the Saffman-Taylor instability. In some works an attempt was made to replace the variable viscosity liquid with a sequence of several immiscible liquids with constant viscosities. We prove that the linear stability analysis of this multi-layer Hele-Shaw model leads us to an ill-posed problem. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11565-021-00371-9

DOI

http://dx.doi.org/10.1007/s11565-021-00371-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140351505


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Simion Stoilow Institute of Mathematics of Romanian Academy, Calea Grivi\u0163ei 21, 010702, Bucharest, Romania", 
          "id": "http://www.grid.ac/institutes/grid.418333.e", 
          "name": [
            "Simion Stoilow Institute of Mathematics of Romanian Academy, Calea Grivi\u0163ei 21, 010702, Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pa\u015fa", 
        "givenName": "Gelu", 
        "id": "sg:person.013667220120.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013667220120.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11242-012-0092-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040614739", 
          "https://doi.org/10.1007/s11242-012-0092-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11565-020-00339-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125712944", 
          "https://doi.org/10.1007/s11565-020-00339-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-012-0048-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034770870", 
          "https://doi.org/10.1007/s11242-012-0048-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-012-9977-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034104145", 
          "https://doi.org/10.1007/s11242-012-9977-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-08-11", 
    "datePublishedReg": "2021-08-11", 
    "description": "A well known approximation for the displacement of two immiscible fluids in a porous medium is the Hele-Shaw model. In experiments it was observed that a liquid with variable viscosity, introduced between the two initial fluids, can minimize the Saffman-Taylor instability. In some works an attempt was made to replace the variable viscosity liquid with a sequence of several immiscible liquids with constant viscosities. We prove that the linear stability analysis of this multi-layer Hele-Shaw model leads us to an ill-posed problem.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11565-021-00371-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136062", 
        "issn": [
          "0430-3202", 
          "1827-1510"
        ], 
        "name": "Annali dell' Universit\u00e0 di Ferrara", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "keywords": [
      "Hele-Shaw model", 
      "variable viscosity liquid", 
      "stability analysis", 
      "linear stability analysis", 
      "immiscible fluids", 
      "porous media", 
      "variable viscosity", 
      "Saffman-Taylor instability", 
      "viscosity liquids", 
      "immiscible liquids", 
      "constant viscosity", 
      "liquid", 
      "viscosity", 
      "displacement", 
      "fluid", 
      "initial fluid", 
      "model", 
      "instability", 
      "experiments", 
      "analysis", 
      "problem", 
      "approximation", 
      "medium", 
      "attempt", 
      "sequence"
    ], 
    "name": "Stability analysis for a multi-layer Hele-Shaw displacement", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140351505"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11565-021-00371-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11565-021-00371-9", 
      "https://app.dimensions.ai/details/publication/pub.1140351505"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_911.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11565-021-00371-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00371-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00371-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00371-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00371-9'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      22 PREDICATES      54 URIs      42 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11565-021-00371-9 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nac36651ed2504de7a6a424712d8dba2d
4 schema:citation sg:pub.10.1007/s11242-012-0048-3
5 sg:pub.10.1007/s11242-012-0092-z
6 sg:pub.10.1007/s11242-012-9977-0
7 sg:pub.10.1007/s11565-020-00339-1
8 schema:datePublished 2021-08-11
9 schema:datePublishedReg 2021-08-11
10 schema:description A well known approximation for the displacement of two immiscible fluids in a porous medium is the Hele-Shaw model. In experiments it was observed that a liquid with variable viscosity, introduced between the two initial fluids, can minimize the Saffman-Taylor instability. In some works an attempt was made to replace the variable viscosity liquid with a sequence of several immiscible liquids with constant viscosities. We prove that the linear stability analysis of this multi-layer Hele-Shaw model leads us to an ill-posed problem.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N1de78d3ddbeb41feb225e40ab4298fc8
15 Nd6b079151d244912a3b052ede983a728
16 sg:journal.1136062
17 schema:keywords Hele-Shaw model
18 Saffman-Taylor instability
19 analysis
20 approximation
21 attempt
22 constant viscosity
23 displacement
24 experiments
25 fluid
26 immiscible fluids
27 immiscible liquids
28 initial fluid
29 instability
30 linear stability analysis
31 liquid
32 medium
33 model
34 porous media
35 problem
36 sequence
37 stability analysis
38 variable viscosity
39 variable viscosity liquid
40 viscosity
41 viscosity liquids
42 schema:name Stability analysis for a multi-layer Hele-Shaw displacement
43 schema:pagination 1-9
44 schema:productId N1bb549bab1294fc88611ac3391982287
45 N961f938de17d4050aa2e4a26e543702d
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140351505
47 https://doi.org/10.1007/s11565-021-00371-9
48 schema:sdDatePublished 2022-05-20T07:39
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N2dec85f595b34467830c464522723264
51 schema:url https://doi.org/10.1007/s11565-021-00371-9
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N1bb549bab1294fc88611ac3391982287 schema:name doi
56 schema:value 10.1007/s11565-021-00371-9
57 rdf:type schema:PropertyValue
58 N1de78d3ddbeb41feb225e40ab4298fc8 schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 N2dec85f595b34467830c464522723264 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N961f938de17d4050aa2e4a26e543702d schema:name dimensions_id
63 schema:value pub.1140351505
64 rdf:type schema:PropertyValue
65 Nac36651ed2504de7a6a424712d8dba2d rdf:first sg:person.013667220120.42
66 rdf:rest rdf:nil
67 Nd6b079151d244912a3b052ede983a728 schema:volumeNumber 68
68 rdf:type schema:PublicationVolume
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
73 schema:name Numerical and Computational Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1136062 schema:issn 0430-3202
76 1827-1510
77 schema:name Annali dell' Università di Ferrara
78 schema:publisher Springer Nature
79 rdf:type schema:Periodical
80 sg:person.013667220120.42 schema:affiliation grid-institutes:grid.418333.e
81 schema:familyName Paşa
82 schema:givenName Gelu
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013667220120.42
84 rdf:type schema:Person
85 sg:pub.10.1007/s11242-012-0048-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034770870
86 https://doi.org/10.1007/s11242-012-0048-3
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s11242-012-0092-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040614739
89 https://doi.org/10.1007/s11242-012-0092-z
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s11242-012-9977-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034104145
92 https://doi.org/10.1007/s11242-012-9977-0
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s11565-020-00339-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125712944
95 https://doi.org/10.1007/s11565-020-00339-1
96 rdf:type schema:CreativeWork
97 grid-institutes:grid.418333.e schema:alternateName Simion Stoilow Institute of Mathematics of Romanian Academy, Calea Griviţei 21, 010702, Bucharest, Romania
98 schema:name Simion Stoilow Institute of Mathematics of Romanian Academy, Calea Griviţei 21, 010702, Bucharest, Romania
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...