Stability analysis for a multi-layer Hele-Shaw displacement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-08-11

AUTHORS

Gelu Paşa

ABSTRACT

A well known approximation for the displacement of two immiscible fluids in a porous medium is the Hele-Shaw model. In experiments it was observed that a liquid with variable viscosity, introduced between the two initial fluids, can minimize the Saffman-Taylor instability. In some works an attempt was made to replace the variable viscosity liquid with a sequence of several immiscible liquids with constant viscosities. We prove that the linear stability analysis of this multi-layer Hele-Shaw model leads us to an ill-posed problem. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11565-021-00371-9

DOI

http://dx.doi.org/10.1007/s11565-021-00371-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140351505


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Simion Stoilow Institute of Mathematics of Romanian Academy, Calea Grivi\u0163ei 21, 010702, Bucharest, Romania", 
          "id": "http://www.grid.ac/institutes/grid.418333.e", 
          "name": [
            "Simion Stoilow Institute of Mathematics of Romanian Academy, Calea Grivi\u0163ei 21, 010702, Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pa\u015fa", 
        "givenName": "Gelu", 
        "id": "sg:person.013667220120.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013667220120.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11565-020-00339-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125712944", 
          "https://doi.org/10.1007/s11565-020-00339-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-012-0092-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040614739", 
          "https://doi.org/10.1007/s11242-012-0092-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-012-0048-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034770870", 
          "https://doi.org/10.1007/s11242-012-0048-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-012-9977-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034104145", 
          "https://doi.org/10.1007/s11242-012-9977-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-08-11", 
    "datePublishedReg": "2021-08-11", 
    "description": "A well known approximation for the displacement of two immiscible fluids in a porous medium is the Hele-Shaw model. In experiments it was observed that a liquid with variable viscosity, introduced between the two initial fluids, can minimize the Saffman-Taylor instability. In some works an attempt was made to replace the variable viscosity liquid with a sequence of several immiscible liquids with constant viscosities. We prove that the linear stability analysis of this multi-layer Hele-Shaw model leads us to an ill-posed problem.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11565-021-00371-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136062", 
        "issn": [
          "0430-3202", 
          "1827-1510"
        ], 
        "name": "Annali dell' Universit\u00e0 di Ferrara", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "Hele-Shaw model", 
      "Variable Viscosity Liquid", 
      "stability analysis", 
      "Saffman-Taylor instability", 
      "linear stability analysis", 
      "immiscible fluids", 
      "porous media", 
      "variable viscosity", 
      "viscosity liquids", 
      "immiscible liquids", 
      "constant viscosity", 
      "liquid", 
      "viscosity", 
      "displacement", 
      "fluid", 
      "initial fluid", 
      "model", 
      "instability", 
      "experiments", 
      "analysis", 
      "approximation", 
      "problem", 
      "medium", 
      "attempt", 
      "sequence", 
      "multi-layer Hele-Shaw model", 
      "multi-layer Hele-Shaw displacement", 
      "Hele-Shaw displacement"
    ], 
    "name": "Stability analysis for a multi-layer Hele-Shaw displacement", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140351505"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11565-021-00371-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11565-021-00371-9", 
      "https://app.dimensions.ai/details/publication/pub.1140351505"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_894.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11565-021-00371-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00371-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00371-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00371-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11565-021-00371-9'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      22 PREDICATES      55 URIs      43 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11565-021-00371-9 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N5110fcc7cf6d4416b4633a5b70f88c63
4 schema:citation sg:pub.10.1007/s11242-012-0048-3
5 sg:pub.10.1007/s11242-012-0092-z
6 sg:pub.10.1007/s11242-012-9977-0
7 sg:pub.10.1007/s11565-020-00339-1
8 schema:datePublished 2021-08-11
9 schema:datePublishedReg 2021-08-11
10 schema:description A well known approximation for the displacement of two immiscible fluids in a porous medium is the Hele-Shaw model. In experiments it was observed that a liquid with variable viscosity, introduced between the two initial fluids, can minimize the Saffman-Taylor instability. In some works an attempt was made to replace the variable viscosity liquid with a sequence of several immiscible liquids with constant viscosities. We prove that the linear stability analysis of this multi-layer Hele-Shaw model leads us to an ill-posed problem.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf sg:journal.1136062
15 schema:keywords Hele-Shaw displacement
16 Hele-Shaw model
17 Saffman-Taylor instability
18 Variable Viscosity Liquid
19 analysis
20 approximation
21 attempt
22 constant viscosity
23 displacement
24 experiments
25 fluid
26 immiscible fluids
27 immiscible liquids
28 initial fluid
29 instability
30 linear stability analysis
31 liquid
32 medium
33 model
34 multi-layer Hele-Shaw displacement
35 multi-layer Hele-Shaw model
36 porous media
37 problem
38 sequence
39 stability analysis
40 variable viscosity
41 viscosity
42 viscosity liquids
43 schema:name Stability analysis for a multi-layer Hele-Shaw displacement
44 schema:pagination 1-9
45 schema:productId N42f27509e1f44c138ff810289c0d0ab8
46 Nc2fec98325cc453b9c67708e82461cf8
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140351505
48 https://doi.org/10.1007/s11565-021-00371-9
49 schema:sdDatePublished 2022-01-01T18:57
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N06c9d3989f204af793364106f7d2a8eb
52 schema:url https://doi.org/10.1007/s11565-021-00371-9
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N06c9d3989f204af793364106f7d2a8eb schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N42f27509e1f44c138ff810289c0d0ab8 schema:name dimensions_id
59 schema:value pub.1140351505
60 rdf:type schema:PropertyValue
61 N5110fcc7cf6d4416b4633a5b70f88c63 rdf:first sg:person.013667220120.42
62 rdf:rest rdf:nil
63 Nc2fec98325cc453b9c67708e82461cf8 schema:name doi
64 schema:value 10.1007/s11565-021-00371-9
65 rdf:type schema:PropertyValue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
70 schema:name Numerical and Computational Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1136062 schema:issn 0430-3202
73 1827-1510
74 schema:name Annali dell' Università di Ferrara
75 schema:publisher Springer Nature
76 rdf:type schema:Periodical
77 sg:person.013667220120.42 schema:affiliation grid-institutes:grid.418333.e
78 schema:familyName Paşa
79 schema:givenName Gelu
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013667220120.42
81 rdf:type schema:Person
82 sg:pub.10.1007/s11242-012-0048-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034770870
83 https://doi.org/10.1007/s11242-012-0048-3
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s11242-012-0092-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040614739
86 https://doi.org/10.1007/s11242-012-0092-z
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s11242-012-9977-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034104145
89 https://doi.org/10.1007/s11242-012-9977-0
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s11565-020-00339-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125712944
92 https://doi.org/10.1007/s11565-020-00339-1
93 rdf:type schema:CreativeWork
94 grid-institutes:grid.418333.e schema:alternateName Simion Stoilow Institute of Mathematics of Romanian Academy, Calea Griviţei 21, 010702, Bucharest, Romania
95 schema:name Simion Stoilow Institute of Mathematics of Romanian Academy, Calea Griviţei 21, 010702, Bucharest, Romania
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...